Чем обусловлена электрическая проводимость металлов

Чем обусловлена электрическая проводимость металлов

Электрическая проводимость — металл

Электрическая проводимость металлов обусловлена наличием в их кристаллических решетках свободных электронов, движение которых при наложении электрического поля даже небольшого напряжения получает направленность. С повышением температуры электрическая проводимость металлов уменьшается, так как при этом колебательные движения ионов в узлах кристаллической решетки металлов усиливаются, что препятствует направленному движению электронов. Наоборот, с понижением температуры электрическая проводимость увеличивается, и в области, близкой к абсолютному нулю, у многих металлов наблюдается сверхпроводимость. Значения электрической проводимости у различных металлов сильно расходятся. Их сравнение, однако, затруднено, так как при одинаковой температуре амплитуда колебаний атомов, от которой зависит электрическая проводимость, у разных металлов различна. [1]

Электрическая проводимость металла определяется произведением концентрации электронов на их подвижность. Подвижность электронов ип есть скорость, измеренная в см / сек, в поле, градиент которого равен 1 в [ см. Наряду с шириной запрещенной зоны АЕ, продолжительностью жизни т и концентрацией носителей зарядов при собственной проводимости, подвижность электронов ип представляет собой четвертую существенную величину, характеризующую полупроводник. В случае беспримесных полупроводников к току, образуемому электронами, добавляется еще ток, образуемый дырками. [2]

Электрическая проводимость металла зависит от числа и заряда электронов, участвующих в переносе тока, и среднего времени пробега между столкновениями. Эти же параметры при данной напряженности электрического поля определяют и скорость движения электрона. [3]

Электрическая проводимость металлов сильно зависит от температуры. С повышением температуры колебательные движения ионов в узлах решетки усиливаются, а это, в свою очередь, очень препятствует направленному движению электронов. [5]

Электрическая проводимость металлов сильно зависит от температуры. С понижением температуры тепловые колебания ионов в узлах сильно уменьшаются и электрическая проводимость увеличивается. При температурах, близких к абсолютному нулю, у большинства металлов проявляется сверхпроводимость. [6]

На электрическую проводимость металлов и сплавов влияют температура, концентрация примесей и атомы с некомпенсированными электронами. [7]

При изменении электрической проводимости немагнитных металлов от нуля, до бесконечности вносимое индуктивное сопротивление изменяется от нуля до некоторого предельного значения. При контроле ферромагнитных материалов знак вносимого сопротивления зависит от частоты. На низких частотах вносимое индуктивное сопротивление положительно, а на высоких — отрицательно. [8]

Становится понятной и электрическая проводимость металлов . [10]

В отличие от полупроводников электрическая проводимость металлов мало зависит от имеющихся в их структуре примесных дефектов. Однако примесные дефекты могут оказывать существенное влияние на другие свойства металлов. Так, механические характеристики металлов сильно зависят от наличия в их структуре междоузельных примесных дефектов. С учетом плотнейшей упаковки металлических кристаллов в междоузлия способны попадать лишь микрочастицы небольших размеров, такие, как атомы водорода, углерода, кислорода, азота. Кристаллы многих металлов часто поглощают большое количество указанных примесей. Например, количество водорода, поглощенного палладием или цирконием, обычно настолько велико, что его атомы заполняют почти все междоузлия в кристаллах указанных металлов. [12]

От чего зависит теплопроводность и электрическая проводимость металлов . [13]

В отличие от полупроводников, электрическая проводимость металлов понижается с повышением температуры. Однако и в жидком ( расплавленном) состоянии металлы проводят электрический ток. [14]

В настоящее время различия в электрической проводимости металлов , полупроводников и изоляторов объясняют на основе квантовой теории строения кристаллических веществ или так называемой теории энергетических зон. Сущность ее состоит в следующем. Электроны ближайших к ядру энергетических уровней атомов полностью насыщают эти уровни, находятся в устойчивых состояниях и образуют так называемую заполненную валентную зону. Электрическая проводимость и теплопроводность вещества не связаны с электронами этой зоны. В электрической проводимости могут участвовать только электроны ненасыщенных энергетических уровней. При этом полосы основных и возбужденных ( периферических) энергетических уровней разделяются промежуточными свободными полосами, которые не имеют возможных для электрона квантовых состояний. Эту энергетическую зону, промежуточную между зонами основных и возбужденных уровней, называют запрещенной зоной. [15]

Для того, чтобы говорить об электропроводности, нужно вспомнить о природе электрического тока как такового. Так, при помещении какого-либо вещества внутрь электрического поля происходит передвижение зарядов. Данное движение провоцирует действие как раз электрического поля. Именно поток электронов и есть электроток. Сила тока, как известно нам из школьных уроков по физике, измеряется в Амперах и обозначается латинской буквой I. 1 А представляет собой электроток, при котором за время равное одной секунде проходит заряд в 1 Кулон.

Читайте также:  Выпечка хлеба в хлебопечке без дрожжей

Электрический ток бывает нескольких видов, а именно:

  • постоянный ток, который не изменяется в отношении показателя и траектории движения в любой момент времени;
  • переменный ток, который изменяет свой показатель и траекторию во времени (производится генераторами и трансформаторами);
  • пульсирующий ток претерпевает изменения в величине, но при этом не изменяет своего направления.

Под влиянием электрического поля разного рода материалы способны проводить электроток. Именно данное свойство называется электропроводность, которая у каждого вещества индивидуальна.

Показатель электропроводности напрямую связан с содержанием в материале свободно движущихся зарядов, которые не имеют связи с кристаллической сеткой, молекулами или атомами.

Таким образом, по степени проводимости тока материалы делятся на следующие типы:

  • проводники;
  • диэлектрики;
  • полупроводники.

Самый большой показатель электрической проводности свойственен проводникам. Они представлены в виде металлов или электролитов. Внутри металлических проводников ток обуславливается движением свободных заряженных частиц, таким образом, электропроводимость металлов электронная. Электролитам же свойственна электропроводность ионная, обусловленная движением именно ионов.

Высокая способность к электропроводности трактуется в электронной теории. Так, электроны курсируют среди атомов по всему проводнику из-за их слабой валентной связи с ядрами. То есть, свободно движущиеся заряженные частицы внутри металла закрывают собой пустоты среди атомов и характеризуются хаотичностью передвижения. Если же в электрическое поле будет помещен проводник из металла, электроны примут порядок в своем передвижении, перейдя к полюсу с положительным зарядом. Именно за счет этого и создается электрический ток. Скорость распространения электрического поля в пространстве аналогична скорости света. Именно с данной скоростью электроток движется внутри проводника. Стоит отметить, что это не скорость движения непосредственно электронов (их скорость совсем мала и равняется максимум нескольким мм/сек), а скорость распространения электроэнергии по всему веществу.

При свободном передвижении зарядов внутри проводника они встречают на своем пути различные микрочастицы, с которыми происходит столкновение и некоторая энергия отдается им. Проводники, как известно, испытывают нагрев. Это происходит как раз из-за того, что преодолевая сопротивление, энергия электронов распространяется в качестве теплового выделения.

Такие «аварии» зарядов создают препятствие передвижению электронов, что именуется в физике сопротивлением. Небольшое сопротивление несильно нагревает проводник, а при высоком достигаются большие температуры. Последнее явление используется в нагревательных устройствах, а также в традиционных лампах накаливания. Измерение сопротивления происходит в Омах. Обозначается латинской буквой R.

Электропроводность – явление, которое отображает способность металла или электролита проводить электроток. Данная величина обратная величине электрического сопротивления.
Измеряется электропроводность Сименсами (См), а обозначается буквой G.

Поскольку атомы создают препятствие прохождению тока, показатель сопротивления у веществ различный. Для обозначения было введено понятие удельного сопротивления (Ом-м), которое как раз дает информацию о способностях проводимости веществ.

Современные проводящие материалы имеют форму тонких ленточек, проволок с конкретной величиной площади поперечного сечения и определенной длиной. Удельная электропроводность и удельное сопротивление измеряется в следующих единицах: См-м/мм.кв и Ом-мм.кв/м соответственно.

Таким образом,удельное электрической сопротивление и удельная электропроводность являются характеристиками проводящей способности того или иного материала, площадь сечения которого равняется 1 мм.кв., а длина 1 м. Температура для характеристики – 20 градусов по Цельсию.

Хорошими проводниками электрического тока среди металлов являются драгоценные металлы, а именно золото и серебро, а также медь, хром и алюминий. Стальные и железные проводники имеют более слабые характеристики. Стоит отметить, что металлы в чистом виде отличаются более лучшими электропроводными свойствами по сравнению со сплавами металлов. Для высокого сопротивления, если это необходимо, применяют вольфрамовые, нихромовые и константные проводники.

Имея знания о показателях удельного сопротивления или удельной проводимости очень просто вычислить сопротивление и электропроводность определенного проводника. При этом в расчетах должна использоваться длина и площадь поперечного сечения конкретного проводника.

Читайте также:  Корзина для белья размер

Важно знать, что показатель электропроводности, а также сопротивление любого материала напрямую зависит от температурного режима. Это объясняется тем, что при изменении в температуре происходят и изменения в частоте и амплитуде колебаний атомов. Таким образом, при росте температуры параллельно возрастет и сопротивление потоку движущихся зарядов. А при снижении температуры, соответственно, снижается сопротивление, а электропроводность возрастает.

В некоторых материалах зависимость температуры от сопротивления выражена очень ярко, в некоторых более слабо.

В этой статье раскроем тему электропроводности, вспомним о том, что такое электрический ток, как он связан с сопротивлением проводника и соответственно с его электропроводностью. Отметим основные формулы для вычисления данных величин, коснемся темы скорости тока и ее связи с напряженностью электрического поля. Также затронем связь электрического сопротивления и температуры.

Для начала вспомним о том, что же такое электрический ток. Если поместить вещество во внешнее электрическое поле, то под действием сил со стороны этого поля, в веществе начнется движение элементарных носителей заряда — ионов или электронов. Это и будет электрическим током. Сила тока I измеряется в амперах, и один ампер — это ток, при котором через поперечное сечение проводника протекает за секунду заряд, равный одному кулону.

Ток бывает постоянным, переменным, пульсирующим. Постоянный ток не меняет своей величины и направления в каждый конкретный момент времени, переменный ток с течением времени меняет свои величину и направление (генераторы переменного тока и трансформаторы дают именно переменный ток), пульсирующий ток меняет свою величину, но не меняет направления (например выпрямленный переменный ток является пульсирующим).

Вещества имеют свойство проводить электрический ток под действием электрического поля, и это свойство называется электропроводностью, которая у разных веществ различна. Электропроводность веществ зависит от концентрации в них свободных заряженных частиц, то есть ионов и электронов, не связанных ни с кристаллической структурой, ни с молекулами, ни с атомами данного вещества. Так, в зависимости от концентрации в веществе свободных носителей заряда, вещества по степени электропроводности подразделяются на: проводники, диэлектрики и полупроводники.

Наиболее высокой электропроводностью обладают проводники электрического тока, и по физической природе, проводники в природе представлены двумя родами: металлами и электролитами. В металлах ток обусловлен перемещением свободных электронов, то есть проводимость у них электронная, а в электролитах (в растворах кислот, солей, щелочей) — перемещением ионов — частей молекул, имеющих положительный и отрицательный заряд, то есть проводимость у электролитов ионная. Ионизированные пары и газы отличаются смешанной проводимостью, в них ток обусловлен движением и электронов и ионов.

Электронная теория отлично объясняет высокую электропроводность металлов. Связь валентных электронов с их ядрами в металлах слаба, потому эти электроны свободно перемещаются от атома к атому по объему проводника.

Получается, что свободные электроны в металлах заполняют пространство между атомами подобно газу, электронному газу, и находятся в хаотичном движении. Но при внесении металлического проводника в электрическое поле, свободные электроны станут двигаться упорядоченно, они переместятся по направлению к положительному полюсу, чем создадут ток. Таким образом, упорядоченное движение свободных электронов в металлическом проводнике называется электрическим током.

Известно, что скорость распространения электрического поля в пространстве примерно равна 300000000 м/с, то есть скорости света. Это та же скорость, с которой ток проходит по проводнику.

Что это значит? Это не значит, что каждый электрон в металле движется с такой огромной скоростью, электроны в проводнике напротив — имеют скорость от нескольких миллиметров в секунду до нескольких сантиметров в секунду, в зависимости от напряженности электрического поля, а вот скорость распространения электрического тока по проводнику как раз равна скорости света.

Все дело в том, что каждый свободный электрон оказывается в общем электронном потоке того самого «электронного газа», и во время прохождения тока, электрическое поле оказывает действие на весь этот поток, в итоге электроны непрерывно друг другу передают это действие поля — от соседа к соседу.

Читайте также:  Какой цвет подходит к небесно голубому

Но движутся электроны на своих местах очень медленно, несмотря на то, что скорость распространения электрической энергии по проводнику оказывается огромной. Так, когда на электростанции включают рубильник, ток мгновенно возникает во всей сети, а электроны при этом практически стоят на местах.

Однако, когда свободные электроны движутся по проводнику, они испытывают многочисленные столкновения на своем пути, они сталкиваются с атомами, ионами, молекулами, передавая им часть своей энергии. Энергия движущихся электронов, преодолевающих такое сопротивление, частично рассеивается в виде тепла, и проводник нагревается.

Эти столкновения служат сопротивлением движению электронов, потому свойство проводника препятствовать движению заряженных частиц и называют электрическим сопротивлением. При малом сопротивлении проводника проводник нагревается током слабо, при значительном — намного сильнее, и даже до бела, этот эффект применяется в нагревательных приборах и в лампах накаливания.

Единица изменения сопротивления — Ом. Сопротивление R = 1 Ом — это сопротивление такого проводника, при прохождении по которому постоянного тока в 1 ампер, разность потенциалов на концах проводника равна 1 вольту. Эталон сопротивления в 1 Ом — столб ртути высотой 1063 мм, сечением 1 кв.мм при температуре 0°С.

Поскольку проводникам характерно электрическое сопротивление, то можно сказать, что в какой-то степени проводник способен проводить электрический ток. В связи с этим введена величина, называемая проводимостью или электропроводностью. Электропроводность — это способность проводника проводить электрический ток, то есть величина, обратная электрическому сопротивлению.

Единица измерения электропроводности G (проводимости) — Сименс (См), и 1 См = 1/(1 Ом). G = 1/R.

Так как атомы различных веществ в разной степени препятствуют прохождению электрического тока, то и электрическое сопротивление у различных веществ разное. По этой причине введено понятие удельное электрическое сопротивление, величина которого «р» характеризует проводящие свойства того или иного вещества.

Удельное электрическое сопротивление измеряется в Ом*м, то есть сопротивление куба вещества с ребром в 1 метр. Таким же образом электропроводность вещества характеризуется удельной электропроводностью ?, измеряемой в См/м, то есть проводимость куба вещества с ребром в 1 метр.

Сегодня проводящие материалы в электротехнике используют в основном в виде лент, шин, проволок, с определенной площадью поперечного сечения и определенной длины, но не в виде метровых кубов. И для более удобных расчетов электрического сопротивления и электропроводности проводников конкретных размеров были введены более приемлемые единицы измерения как для удельного электрического сопротивления, так и для удельной электропроводности. Ом*мм2/м — для удельного сопротивления, и См*м/мм2 — для удельной электропроводности.

Теперь можно говорить, что удельное электрическое сопротивление и удельная электропроводность характеризуют проводящие свойства проводника площадью поперечного сечения в 1 кв.мм, длиной в 1 метр при температуре 20°C, это более удобно.

Лучшей электропроводностью обладают такие металлы как: золото, медь, серебро, хром, алюминий. Сталь и железо проводят ток хуже. Чистые металлы всегда обладают лучшей электропроводностью, чем их сплавы, поэтому чистая медь в электротехнике предпочтительней. Если нужно специально высокое сопротивление, то используют вольфрам, нихром, константан.

Зная величину удельного электрического сопротивления или удельной электропроводности, можно легко вычислить сопротивление или электропроводность конкретного проводника, изготовленного из данного материала, приняв в расчет длину l и площадь поперечного сечения S этого проводника.

Электропроводность и электрическое сопротивление всех материалов зависит от температуры , поскольку частота и амплитуда тепловых колебаний атомов кристаллической решетки с ростом температуры так же возрастает, соответственно возрастает и сопротивление электрическому току, потоку электронов.

При понижении температуры — наоборот, колебания атомов кристаллической решетки становятся меньше, сопротивление уменьшается (возрастает электропроводность). У одних веществ зависимость сопротивления от температуры выражена слабее, у других — сильнее. Например такие сплавы как константан, фехраль и манганин слабо меняют удельное сопротивление в определенном интервале температур, поэтому из них делают термостабильные резисторы.

Температурный коэффициент сопротивления ? позволяет вычислить для конкретного материала приращение его сопротивления при определенной температуре, и численно характеризует относительное приращение сопротивления при увеличении температуры на 1 °С.

Зная температурный коэффициент сопротивления и приращение температуры, можно легко вычислить удельное сопротивление вещества при заданной температуре.

Ссылка на основную публикацию
Чем можно сделать фасад дома
Вопрос, чем дешевле отделать фасад дома, актуален практически для всех владельцев частных строений. Ведь, с одной стороны, хочется, чтобы облицовка...
Чем измеряется давление воды в водопроводе
В чем измеряется давление воды в водопроводе холодного либо тёплого водоснабжения? Как именно снимаются замеры давления? Существуют ли какие-то нормативные...
Чем изолировать бетонный пол
Отличной износостойкостью характеризуется модульное покрытие на основе. Ровный пол в любом помещении необходим не только из эстетических побуждений, но. Грамотно...
Чем можно смазать сверху пирог
Итак, чем можно смазать пирожки перед выпечкой или после неё, и что от этого получится. Ведь от того чем они...
Adblock detector