Что такое инфразвук в физике

Что такое инфразвук в физике

Инфразву́к (от лат. infra — ниже, под) — звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16—20’000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десятки секунд.

Содержание

Характеристики инфразвука

Инфразвук подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды [1] :

  • инфразвук имеет гораздо большие амплитуды колебаний в сравнении с равномощным слышимым человеком звуком;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку поглощение инфразвука атмосферой незначительно;
  • благодаря большой длине волны для инфразвука характерно явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки;
  • инфразвук вызывает вибрацию крупных объектов, так как входит в резонанс с ними.

Перечисленные особенности инфразвука затрудняют борьбу с ним, поскольку обычные способы противошумовой борьбы (звукопоглощение, звукоизоляция, удаление от источника звука) против инфразвука малоэффективны.

Инфразвук, образующийся в море, называют одной из возможных причин появления «летучих голландцев» — судов, покинутых экипажем в открытом море в ситуации, когда физической опасности судну нет [2] (см. Бермудский треугольник, Корабль-призрак).

Источники инфразвука

Инфразвук генерируется планетарной корой при землетрясениях, ударах молний, при сильном ветре (инфразвуковой аэродинамический шум) во время бурь и ураганов (в последнем случае регистрация инфразвука, в том числе нарастание инфразвукового фона, — верный признак приближения шторма. В частности прибрежные сухопутные и морские животные уходят в глубь суши и воды соответственно, заслышав нарастающий инфразвуковой шум и следовательно ожидая приближение шторма) [8] .

При помощи инфразвука общаются между собой киты и слоны. Инфразвук был зарегистрирован и при взрыве Челябинского метеорита в 2013 г. инфразвуковыми станциями систем обнаружения ядерных взрывов по всей Земле [9] .

Техногенный инфразвук генерируется разнообразным оборудованием при колебаниях поверхностей больших размеров, мощными турбулентными потоками жидкостей и газов, при ударном возбуждении конструкций, вращательном и возвратно-поступательном движении больших масс. Основными техногенными источниками инфразвука являются тяжёлые станки, ветрогенераторы, вентиляторы, электродуговые печи, поршневые компрессоры, турбины, виброплощадки, сабвуферы, водосливные плотины, реактивные двигатели, судовые двигатели. Кроме того, инфразвук возникает при наземных, подводных и подземных взрывах.

Распространение инфразвука

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень большие расстояния, и инфразвук может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. (Последнее может быть использовано в контрбатарейной борьбе.) Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды, геодезического зондирования земной коры с дневной поверхности.

Физиологическое действие инфразвука

Физиологическое действие инфразвука на живые существа (в том числе человека) зависит только от его спектральных, временных и мощностных характеристик и не зависит от того, на открытом пространстве или в помещении находится живой объект воздействия.
Патогенное действие инфразвука заключается в повреждении нервной системы (в частности головного мозга), органов эндокринной системы и внутренних органов вследствие развития тканевой гипоксии из-за ликвор-гемодинамических и микроциркуляторных нарушений.
При 180—190 дБ действие инфразвука смертельно вследствие разрыва лёгочных альвеол. Другие зоны интенсивных кратковременных воздействий вызывают синдром резко выраженного инфразвукового дискомфорта, предел переносимости которого наблюдается при 154 дБ. Исследования показали, что низкочастотные акустические колебания, в том числе и инфразвуковые, продолжительностью от 25 с до 2 мин с удельным звуковым давлением от 145 до 150 дБ в диапазоне частот от 1 до 100 Гц, вызывали у испытуемых ощущение вибрации грудной стенки, сухость в полости рта, нарушение зрения, головные боли, головокружение, тошноту, кашель, удушье, беспокойство в области подреберий, звон в ушах, модуляцию звуков речи, боли при глотании и некоторые другие признаки нарушений в деятельности организма [10] .

Обнаружение и регистрация инфразвука

Обнаружение и регистрация инфразвука представляют определённые трудности в силу того, что из-за низкой частоты колебаний волны имеют многометровую длину и, представляя собой упругие механические колебания среды распространения, легко смешиваются с механическими колебаниями не инфразвуковой природы. Таким образом датчики инфразвука требуют защиты от наводимых ветром помех и других возмущений от близкорасположенных объектов. При этом сам инфразвук может быть зафиксирован за многие километры от его источника.

Для обнаружения инфразвука могут быть использованы устройства, основанные на принципе резонансного вибратора (струны, рупоры, трубы). Недостатком таких устройств является узкий диапазон обнаруживаемых ими частот, совпадающих с их собственной резонансной частотой и огромные многометровые размеры, которые должны равняться или быть кратным длинам обнаруживаемых волн. Преимуществом является высокая чувствительность и КПД.

На практике для обнаружения инфразвуковых волн используют в основном компактные датчики, преобразующие акустические колебания в электрические сигналы с их дальнейшим усилением и обработкой средствами электроники [11] [7] [12] :

  • низкочастотные конденсаторные микрофоны свободного поля (для высокочастотного инфразвука от 0,5 Гц и выше, к примеру 40AZ — ½”, BSWA MP-201 и др.). Так как ЭДС микрофонов связана не с амплитудой движения их чувствительной мембраны, а с ускорением её движения, то при низкочастотном инфразвуке (одно колебание за несколько секунд) ЭДС в капсюлях микрофонов практически отсутствует, из-за чего низкочастотный инфразвук невозможно регистрировать микрофонами физически;
  • микробарометры (для низкочастотного инфразвука). Так как инфразвук является упругими колебаниями среды распространения, представляющими собой чередующиеся зоны сжатия-разрежения, то периодическое изменение давления (с периодичностью 1 колебание в секунды и минуты) по фронту его распространения возможно зафиксировать микробарометрами. Высокочастотный же инфразвук микробарометрами невозможно фиксировать из-за их реактивности (не успевают реагировать на столь быстрые незначительные изменения давления).
Читайте также:  Мастер класс домовенок кузя из капрона

Компактные датчики инфразвука применяются в инфразвуковых станциях обнаружения и мониторинга за ядерными взрывами, в системах раннего оповещения о природных катаклизмах (бури, цунами), в шумомерах-анализаторах.

Генераторы инфразвука

Способы борьбы с инфразвуком

Мифы об инфразвуке

В ряде кино- и телефильмов активно эксплуатируется тема инфразвукового оружия, которое физически вполне возможно, однако при его описании сценаристы попадают впросак, поскольку слабо или вообще не знакомы с физикой излучения и приёма волн, в т. ч. акустических. Например, в эпизоде «Крысобой» телесериала «След» фигурирует носимый преступником автономный компактный направленный (т. е. безопасный для оператора) излучатель инфразвуковых волн, встроенный в корпус компьютера-планшета, из-за которого гибнут несколько человек.

Однако такое устройство нереализуемо вследствие физических причин: [ источник не указан 477 дней ] для частоты 7 Гц длина инфразвуковой волны составляет около 47 м. Величину не менее порядка этого значения должен иметь линейный размер акустического излучателя для хорошей её генерации [13] . Причём если предположить, что каким-либо образом излучатель инфразвука размером с носимый в руках планшет (линейным размером 25-30 см, много меньшим длины волны в 47 м) способен генерировать волну с интенсивностью, достаточной для летального воздействия на организм человека (например за счёт направляемой в него большой мощности), то исходя из фундаментальных свойств излучения волн его действие будет всенаправленным [14] , и первой жертвой станет сам оператор такого устройства [ источник не указан 477 дней ] . Кроме того, на настоящем этапе развития техники обеспечение генерирования инфразвуковых волн с достаточной для летального действия энергией является серьёзной технической проблемой [ источник не указан 477 дней ] . В качестве реализуемого на сегодняшний день источника такого акустического излучения [ источник не указан 477 дней ] предполагается использование мощных авиационных реактивных двигателей с резонаторами [15] , что снова исключает возможность переноса и использования такого устройства одним человеком [ источник не указан 477 дней ] .

Примечания

  1. ↑Глава 13. Инфразвук, Н. Ф. Измеров, В. Ф. Кириллов. Гигиена труда / Учебник — М.: ГЭОТАР-Медиа, 2010 г. — 592 c.
  2. ↑ Мезенцев В. А. В тупиках мистики. М.: Московский рабочий, 1987.
  3. ↑Cебе доверяй, а других проверяй, Михайлов В. Статья, газета «Военно-промышленный курьер», № 8 (124), 01.03.2006 г.
  4. ↑О предварительных результатах, полученных на инфразвуковой станции «Торы», Сорокин А.Г. Научная статья, журнал «Солнечно-земная физика», № 22, 2013 г. С. 77—80. УДК: 550.34.034. Изд.: «Институт солнечно-земной физики Сибирского отделения Российской академии наук» (Иркутск). ISSN: 2412-4737.
  5. ↑Мобильные инфразвуковые группы, Статья на сайте Кольского филиала Единой геофизической службы РАН.
  6. ↑Новая инфразвуковая станция открылась в ВКО, Алманов Р. 10.08.2016 г. Atameken Business Channel.
  7. 12Инфразвуковые группы, Статья на сайте Кольского филиала Единой геофизической службы РАН.
  8. ↑Инфразвук. Живые предвестники беды, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
  9. ↑Инфразвуковые микрофоны учатся слушать падения небольших астероидов, 24.09.2014 г. Иллюстрированный блог со ссылками на ВП:АИ.
  10. ↑Научные основы регламентации инфразвука в медицине труда (медико-биологические аспекты), Куралесин Н. А. / Автореферат диссертации на соискание учёной степени доктора медицинских наук. Москва, РАМН, НИИ медицины труда — 1997 г.
  11. ↑Инфразвук служит человеку, Хорбченко И. Г. Звук, ультразвук, инфразвук / М.: Знание, 1986 г. — 160 с.
  12. ↑«Голос» вулканов похож на звук реактивных двигателей, 09.04.2009 г. Статья. МИА «Россия сегодня».
  13. ↑§ 52. Условия хорошего излучения звука, Ландсберг Г.С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. — 656 c. Стр. 134-135.
  14. ↑§ 42. Направленное излучение Ландсберг Г.С. Элементарный учебник физики / Том 3. Колебания и волны. Оптика. Атомная и ядерная физика // М.: Наука, 1985 г. — 656 c. Стр. 112-114.
  15. ↑Глава 11 / 11.4. Инфразвуковое оружие — В. В. Мясников. Защита от оружия массового поражения / Изд. 2, М.: «Воениздат», 1989 г.

См. также

Литература

  • Сокол Г. И. «Особенности акустических процессов в инфразвуковом диапазоне частот». — Днепропетровск: Проминь, 2000. — 143 с. (обзор 803 источников литературы).
  • Боенко И. В., Фрайман Б. Я. Колебания сосудистой стенки при действии инфразвука. Воронеж, 1983 г., стр. 1-8. Рукопись депонирована во ВНИИМИ 16.09.83. №Д-6783.
  • Фрайман Б. Я.,Безруков В. Е. Условия, при которых осуществляется прямое действие инфразвука на стенку кровеносного сосуда. Воронеж, 1983 г. стр. 1-13. Рукопись депонирована во ВНИИТИ 13.01.83г. № 6748-83
  • Жуков А. И., Иванников А. Н., Фрайман Б. Я. О необходимости изучения пространственной структуры звукового поля при оценке действия низкочастотного шума. «Борьба с шумом и звуковой вибрацией», Москва, 1989 г., стр 53-59.
  • Жуков А. И., Иванников А.Н, Ларюков А. С., Нюнин Б. Н.,Павлов В. И., Фрайман Б. Я. Определение аномально активной зоны вредного действия инфразвуковых шумов в жилых и административных помещениях. «Проблемы акустической экологии», Ленинград, Стройиздат, 1990 г. стр. 13-21.
  • Fraiman B., Ivannikov A., Zhukov A. On the influence of infranoise fildes on humanus. «6-th Internacional Meeting on Low friguence Noise and Vibracion». 4-6 September 1991. Leiden, pp. 46–56.
  • Fraiman B., Voronin A., Fraiman E. The alternative mechanism of the infrasound influence on organism."Noise and Man −93. 6-th Internationale Congress. Nice,France,1993.Vol 2, pp 501—504.
  • Fraiman B. Mechanism of the infrasound effect in transport means. «Transport Noise — 94». St-Petersburg, Russia,1994,pp 29–32.
  • Санитарные нормы: СН 2.2.4/2.1.8.583-96 «Физические факторы производственной среды. Физические факторы окружающей природной среды. Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки». — Утверждены Постановлением Госкомсанэпиднадзора РФ от 31.10.1996 г. № 52.
Читайте также:  Конвертер цифрового тв сигнала в аналоговый

Ссылки

Что такое Wiki.sc Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Звуковые волны с частотой, меньшей 16 Гц, называются инфразвуком.

Инфразвуковые волны человеческое ухо не воспринимает (рис. 1.71). Несмотря на это, они способны оказывать на человека определенное физиологическое воздействие. Объясняется это действие резонансом. Внутренние органы нашего тела имеют достаточно низкие собственные час­тоты: брюшная полость и грудная клетка — 5-8 Гц, голова — 20-30 Гц. Среднее значение резо­нансной частоты для всего тела составляет 6 Гц. Имея частоты того же порядка, инфразвуковые волны заставляют наши органы вибрировать и при очень большой интенсивности способны при­вести к внутренним кровоизлияниям.

Специальные опыты показали, что облучение людей достаточно интенсивным инфразвуком может вызвать потерю чувства равновесия, тошноту, непроизвольное вращение глазных яблок и т. д. Например, на частоте 4-8 Гц человек ощущает перемещение внутренних органов, а на час­тоте 12 Гц — приступ морской болезни.

Рассказывают, что однажды американский физик Р. Вуд (прослывший среди коллег большим оригиналом и весельчаком) принес в театр специальный аппарат, излучающий инфразвуковые волны, и, включив его, направил на сцену. Никакого звука никто не услышал, однако с актрисой случилась истерика.

Резонансным влиянием на человеческий организм низкочастотных звуков объясняется и воз­буждающее действие современной рок-музыки, насыщенной многократно усиленными низкими частотами барабанов, бас-гитар.

Инфразвук не воспринимается человеческим ухом, однако его способны слышать некоторые животные. Например, медузы уверенно воспринимают инфразвуковые волны с частотой 8-13 Гц, возникающие при шторме в результате взаимодействия потоков воздуха с гребнями морских волн. Достигая медуз, эти волны заранее (за 15 часов!) «предупреждают» о приближающемся шторме.

Источниками инфразвука могут служить грозовые разряды, выстрелы, извержения вулканов, работающие двигатели реактивных самолетов, ветер, обтекающий гребни морских волн, и т. д. Для инфразвука характерно малое поглощение в различных средах, вследствие чего он может рас­пространяться на очень большие расстояния. Это позволяет определить места сильных взрывов, положение стреляющего орудия, осуществлять контроль за подземными ядерными взрывами, предсказывать цунами и т. д.

К инфразвукам относят механические колебания и волны с частотами ниже 20 Гц. Нижняя граница их неопределенна. Практический интерес представляют инфразвуки с частотами в несколько герц и даже в десятые и сотые доли герца.

Источником инфразвука может быть любое тело, колеблющееся с соответствующей частотой. Поскольку частота собственных колебаний уменьшается с увеличением размеров тела, то обычно инфразвуки возникают при колебаниях, а также при быстрых перемещениях тел, имеющих большие поверхности. Они создаются, например, при резком открывании и закрывании дверей, при ударе по натянутому полотну и т.п. В природе источниками инфразвука являются грозовые разряды, обвалы, взрывы, землетрясения. Все такие источники инфразвука создают, как правило, несинусоидальные, или импульсные, затухающие колебания.

Генераторами незатухающих инфразвуковых волн служат устройства, напоминающие органные трубы или свистки. Если труба открыта с одного конца, то ее длина равна четверти установившейся в ней стоячей волны. Поскольку длина волны инфразвука велика, то и размеры трубы должны быть значительными. Например, для звука с частотой 17 Гц длина волны l = 340 (м/с)/17 с –1 = 20 м. Поэтому длина полуоткрытой трубы генератора должна быть 5 м. Мощность таких генераторов зависит от мощности протекающего через нее потока воздуха и от ее диаметра, так как чем больше диаметр трубы, тем больше ее излучающая поверхность. Свистки и трубы позволяют излучать довольно большие акустические мощности. Через милицейский свисток человек в состоянии продувать в секунду до 2 л воздуха, на что требуется примерно 4 Вт. Считая к. п. д. свистка 25%, получаем акустическую мощность 1 Вт. Такой свист в замкнутом помещении вызывает болезненные ощущения. Инфразвуковой «свисток», изготовленный в лаборатории французского ученого Гавро, имел в диаметре 1,5 м и максимальную мощность 2 кВт. При работе его даже на неполной мощности в стенах помещения появлялись трещины. Включить его на полную мощность было опасно, так как инфразвук мог разрушить здание, в котором находился «свисток».

Читайте также:  Пропал доступ в интернет на компьютере

Инфразвуки распространяются на очень большие расстояния, так как коэффициент поглощения звука уменьшается с возрастанием длины волны. Инфразвук с частотой 3 Гц, создаваемый источником мощностью 1 Вт, можно обнаружить на расстоянии до 100 км. Инфразвук от ядерного взрыва обегает весь земной шар. Обладая большой длиной волны, он огибает препятствия (деревья, здания); кроме того, он приводит в резонансные колебания твердые тела больших размеров (стены дома, двери), которые сами становятся источниками инфразвука. Все это увеличивает проникающую способность инфразвука, от которого практически нет защиты.

Инфразвук не воспринимается человеческим ухом по той причине, что вызываемые им колебания барабанной перепонки слишком медленные, и перилимфа в улитке, будучи сдавлена со стороны овального окна, успевает в течение периода колебания выровнять давление выпячиванием круглого окна. Поэтому инфразвук не может вызвать колебания волокон основной мембраны, связанных со слуховым нервом.

Действию обычного звука на человека и животных за последние годы посвящено много исследований. Однако имеющиеся на сегодняшний день сведения о биологическом действии инфразвука гораздо скуднее и во многом противоречивы. В связи с тем что инфразвук неслышим, долгое время считалось, что он биологически нейтрален, и изучения его в этом направлении не проводились. Поводом, заставившим ученых заняться исследованием биологического действия инфразвука, были наблюдения Гавро, руководителя лаборатории электроакустики в Марселе. Он заметил, что когда в одном из корпусов лаборатории работал мощный вентилятор, создававший акустические волны с частотой 7 Гц, то находившиеся в здании сотрудники чувствовали недомогание, усталость, головные боли. Для проверки был построен генератор, о котором говорилось выше. При испытании генератора исследователи ощущали сильные внутренние боли, нарушение координации движений и зрения. Оказалось, что инфразвук действует на вестибулярный аппарат, область собственных частот которого лежит в диапазоне от 2 до 20 Гц; под действием инфразвука он приходит в резонансные колебания, нарушающие его нормальную деятельность.

Инфразвук вызывает также вынужденные колебания различных органов. Каждый орган в отдельности обладает той или иной собственной частотой колебаний. Некоторые из них, такие, как печень, почки и другие, сами по себе не совершают колебательных движений, но под действием внешней периодической силы они могут войти с ней в резонанс. Так, медики обратили внимание на опасный резонанс брюшной полости, происходящий при частотах 4–8 Гц. Резонансные колебания некоторых органов ведут к раздражению различных рецепторов, передающих информацию о раздражителе в нервные центры. Таким образом, инфразвук создает рефлекторные реакции других органов и систем, и его энергия переходит в энергию биохимических процессов, характеризующих ответную реакцию всего организма на действие инфразвукового раздражителя. Эта реакция сопровождается ощущением боли, возникновением неприятных ощущений, затруднением дыхания и пр.

Особенно вредно воздействие инфразвука на такую объемную резонирующую систему, как сердце. В инфразвуковом поле достаточной мощности возникают вынужденные колебания сердечной мышцы, при резонансе их амплитуда возрастает, что может приводить к разрывам сосудов. Это подтверждается в опытах с крысами. После облучения инфразвуком с частотой 7 Гц и мощностью 170 дБ в течение 20 мин крыс забивали и у них были обнаружены расширение кровеносных сосудов и кровоизлияния. Если инфразвук находится в противофазе с собственными колебаниями сосудистой, системы, то кровообращение тормозится, а при достаточной интенсивности инфразвука сердце может остановиться.

Частоты собственных колебаний крупных органов, как правило, лежат в диапазоне от 2 до 17 Гц, что и обусловливает опасное действие инфразвука. Особенно следует отметить резонанс инфразвука с частотой 7 Гц с колебаниями a-волн мозга. Такой инфразвук даже при небольших интенсивностях вызывает расстройство органов зрения, тошноту, общую слабость. При средних мощностях (140–155 дБ) регистрируют обмороки, временную потерю зрения, а при еще больших мощностях (порядка 180 дБ) параличи, приводящие к смертельным поражениям. Некоторые исследователи указывают на психическое действие инфразвука. У облученных им людей поражаются все виды интеллектуальной деятельности, появляется чувство тревоги, страха. Такие же явления имеют место и у животных.

У человека, подвергнутого воздействию инфразвука низкой интенсивности, появляются симптомы «морской болезни», тошнота, головокружение. Появляется головная боль, повышается утомляемость, слабеет зрение.

Шум на частоте 2-15 Гц при уровне интенсивности 95 дБ приводит к возрастанию ошибки слежения за стрелочными индикаторами. Проявляется судорожное подергивание глазного яблока, нарушение функции органов равновесия.

Летчики и космонавты, подвергнутые на тренировках воздействию инфразвука, медленнее решали даже простые арифметические задачи.

Существует предположение, что различные аномалии в состоянии людей при плохой погоде, объясняемые климатическими условиями, являются на самом деле следствием воздействия инфразвуковых волн.

Так как инфразвук оказывает неблагоприятное действие на организм, то одной из задач является снижение уровня его интенсивности в жилых и производственных помещениях, в транспортных средствах.

Ссылка на основную публикацию
Что сделать чтобы планшет быстро заряжался
Вам необходимо быстро уходить, на сборы всего минут двадцать, вы хватаете в руки планшет — а там заряда всего на...
Черные розы фото высокое качество
Роза является символом красоты. Представлена она в виде разветвлённого кустарника, на стеблях есть шипы, листья зелёного цвета, бутоны имеют различный...
Черный жемчуг цвет авто
В каталоге приведены автомобильные цвета российских и иностранных автопроизводителей. В основном, данные цвета относятся к краскам Mobihel и Duxone, автоэмали...
Что слышно про пенсионный возраст в россии
Мы в любом случае столкнемся с увеличением пенсионного возраста. Уже многократно были обозначены причины этого неприятного мероприятия. Разберём их ещё...
Adblock detector