Что такое нейтраль сети

Что такое нейтраль сети

Нейтралями электроустановокназывают общие точки обмоток генераторов или трансформаторов, соединенных в звезду.

Вид связи нейтралей машин и трансформаторов с землей в значительной степени определяет уровень изоляции электроустановок и выбор коммутационной аппаратуры, величину перенапряжений и способы их ограничения, токи при однофазных коротких замыканиях на землю, условия работы релейной защиты, безопасность в электрических сетях, электромагнитное влияние на линии связи и т.д. [2].

В зависимости от режима работы нейтрали электрические сети делятся на 4 группы:

1) сети с незаземленными (изолированными) нейтралями;

2) сети с резонансно-заземленными (компенсированными) нейтралями;

3) сети с эффективно-заземленными нейтралями;

4) сети с глухозаземленными нейтралями.

Режим нейтрали определяет ток однофазного короткого замыкания, и в зависимости от его величины сети делятся на сети с малыми токами замыкания на землю (менее 500 А),в основном это сети 1-й и 2-й групп, и сети с большими токами замыкания на землю (более 500А).

3.1. Работа сети с изолированной нейтралью

На рис. 3.1 представлена трехлинейная схема замещения трехфазной сети с изолированной от земли нейтралью. Все источники питания сети заменены одним эквивалентным, соединенным в звезду источником, все линии одной эквивалентной линией, все приемникиодним эквивалентным приемником. С достаточно высокой достоверностью можно считать, что все фазы схемы замещения имеют одинаковые параметры (схема симметрична). Из параметров эквивалентной линии при анализе режима нейтрали имеют значение только зарядные токи и емкостные проводимости относительно земли, которые и изображены на рис. 3.1.

Расчетная емкостная проводимость одной фазы сети равна

,

где В емкостная проводимость сети,См; bi, удельная емкостная проводимость линииi(на единицу длины).См/км; li эквивалентная длина линииiс учетом параллельных ветвей,км.

ис. 3.1. Схема замещения сети с изолированной нейтралью:

а) нормальный режим работы; б) режим однофазного замыкания на землю в фазе с,

1 — эквивалентный источник питания сети; 2 — эквивалентная линия.

3 — эквивалентный приемник, подключенный к сети

сетях 6 — 35кВудельная емкостная проводимостьbу кабельных линий при сечениях жил 10-300мм 2 находится в пределах (60-180)•10 –6 См/кми определяется конструкцией кабеля [3]. У воздушных линий со сталеалюминиевыми проводами сечением 25150 мм 2 и среднегеометрическим расстоянием между проводами 13мудельная емкостная проводимость находится в пределах(2,73,6)•10 –6 См/км.

При отсутствии данных о длине и емкостной проводимости каждой линии сети для расчета зарядного тока обычно пользуются усредненными коэффициентами емкостной проводимости:

где Iззарядный ток, А;Uномноминальное фазное напряжение сети,кВ;bксредний коэффициент емкостной проводимости кабельных линий,См/км; lк суммарная эквивалентная длина кабельных линий сети,км; bв средний коэффициент емкостной проводимости воздушных линий,См/км; lвсуммарная эквивалентная длина воздушных линий,км.

При напряжениях до 10 кВэта формула имеет вид

Рис. 3.2. Векторные диаграммы напряжения относительно земли и зарядных токов сети с изолированной нейтралью

действующих сетях наиболее достоверные данные о зарядном токе получают путем измерений.

Векторная диаграмма напряжений относительно земли и зарядных токов сети приведена на рис. 3.2, а.По сравнению с током нагрузки зарядный ток очень мал и в нормальных режимах работы заметного влияния на работу сети не оказывает.

При нарушении изоляции одной фазы возникает однофазное замыкание на землю (см. рис. 3.1, б). Напряжение этой фазы (фазас) относительно земли становится равным нулю, напряжение остальных фаз относительно землимеждуфазному напряжению, а зарядные токи этих двух фаз увеличиваются враз (рис. 3.2,б).

В сети с изолированной нейтралью коэффициентом замыкания на землю называют отношение , в которомнапряжение неповрежденной фазы при коротком замыкании в другой фазе (других фазах);Uнпнапряжение той же фазы в нормальном режиме). Для рассматриваемого случаяkз.з=.

Сумма зарядных токов фаз и тока замыкания на землю Iз.здолжна равняться нулю. Учитывая сдвиг фазы между зарядными токами двух неповрежденных фаз, можно заключить, что. ЗдесьIззарядный ток одной фазы в нормальном режиме работы;то же в неповрежденной фазе при замыкании на землю в другой фазе). ТокIз.з по сравнению с нагрузочным током сети или ее отдельных линий относительно мал и может вызывать заметную перегрузку линий только при очень малых сечениях проводников поврежденной линии.

Замыкание на землю практически не влияет на систему междуфазных напряжений и режимы работы приемников, включенных на линейное напряжение, так как поверхность земли в точке заземления (повреждения) приобретает потенциал фазы (на рис. 3.2 фазыс), а напряжение здоровых фазаиbотносительно земли (и фазыс) становится линейным (междуфазным).

В связи с этим замыкание на землю в сетях с изолированной нейтралью считается не аварийным, а лишь анормальным режимом, при возникновении которого сеть и поврежденная линия могут оставаться включенными и в течение некоторого времени продолжать работу; при этом питание потребителей не прерывается. Время, за которое требуется отыскать и отключить возникающее в сети замыкание на землю, обычно принимают равным 2 ч.Поскольку из всех видов нарушения изоляции однофазные замыкания на землю составляют около 7585%, то это обстоятельство существенно для обеспечения надежности питания потребителей. Другим преимуществом рассматриваемого вида сетей является отсутствие устройств заземления нейтрали, что снижает стоимость сети.

При работе в сетях с изолированной нейтралью следует обращать внимание на следующие обстоятельства:

Читайте также:  Подвесная лампа своими руками

1) повышение напряжения двух фаз относительно земли во время замыкания на землю третьей приводит к тому, что изоляцию всех фаз относительно земли необходимо рассчитывать не на фазное, а на междуфазное напряжение. Только при напряжениях до 35 кВэто не вызывает существенного удорожания сети;

2) возможность образования в месте замыкания на землю перемежающейся электрической дуги обусловливает возникновение коммутационных перенапряжении с амплитудой 46Uном. Эти перенапряжения могут нарушить работу некоторых приемников и привести к пробою изоляции в других местах и других фазах сети;

3) тепловое действие дуги на изоляцию фаз сети в месте замыкания на землю может привести к переходу однофазного замыкания на землю в двух или трехфазное (в кабельных линиях и в других случаях близкого расположения фазных проводников друг к другу);

4) возникновение в сети и в источниках питания при замыкании на землю системы токов обратной последовательности может привести к индуцированию в роторах синхронных генераторов токов двойной частоты и к существенному дополнительному нагреву роторов.

Из-за приведенных выше нежелательных явлений работа сети с изолированной нейтралью допускается, если токи замыкания на землю не превышают некоторых максимально допустимых значений, находящихся обычно в пределах 1030А(табл. 3.1). Величины максимально допустимых токов замыкания на землю зависят от типа используемых опор.

Допустимый ток замыкания на землю в сетях высокого напряжения с изолированной нейтралью напряжением до 35 кВ

Напряжение сети, кВ

Максимально допустимый ток замыкания на землю, А

В электрических сетях напряжением 6 – 35 кВ ключевой проблемой является способ заземления способ заземления нейтрали (режим заземления нейтрали), поскольку он оказывает решающее влияние на надежность электроснабжения потребителей, на сохранность электрических машин и кабелей, на безопасность людей, и в очень большой степени на выбор принципов и типов устройств (РЗА), а также на способы использования этих устройств для отключения для отключения замыкания на землю или только для сигнализации. Необходимо отметить, что в таких сетях соединение фазного провода с землёй не является коротким замыканием, и его называют замыканием на землю.

Существуют 3 способа заземления нейтрали в сетях 6 – 35 кВ:

1) изолированная нейтраль

2) Резонансно-заземленная нейтраль (компенсированной нейтрали)

3) Нейтраль, заземленная через резистор

В России главным образом используется режим либо изолированной нейтрали, либо резонансно-заземленной нейтрали.

Режим №1: изолированная нейтраль

При возникновении металлического замыкания на землю какой либо из фаз (например фазы А) симметрия напряжений и токов в системе нарушается: напряжение поврежденной фазы снижается до нуля, а напряжение неповрежденных фаз повышается в раз т.е. становится равным линейному. Провода ВЛ обладают емкостью по отношению к земле (допустим С11 = С22 = С33) и через нее течет емкостной ток замыкания на землю. Сила этого тока не велика (от единиц до десятков А), но может наносить вред указанный выше. (Поэтому существует необходимость производить оценку опасности этого тока, сигнализировать о нем или производить отключение поврежденного участка.) Одновременно на нейтрали появляется разность потенциалов Uн по отношению к земле, по величине равная напряжению поврежденной фазы, но с обратным значением. При этом предполагается, будто у места замыкания на землю ко всем фазам, а также к нейтрали приложено напряжение, равное по величине и обратное по значению напряжению поврежденной фазы.

В результате геометрического сложения напряжений получаем:

C нарушением симметрии напряжений происходит нарушение симметрии токов, текущих в землю:

Ток замыкания на землю:

где – угловая частота переменного тока;

емкость линии по отношению к земле, — для ВЛ,

— для КЛ

Зависит от конструкции ВЛ и КЛ и колеблется в некоторых пределах в зависимости от расположения проводов относительно земли.

Подставив выражения в формулу тока замыкания получаем:

– для ВЛ — для КЛ

Сила тока замыкания на землю не должна превосходить следующих значений:

Напряжение, кВ
Сила тока, А

В электрических сетях напряжением 6…35 кВ, имеющих железобетонные или металлические опоры, ток замыкания на землю во всех случаях не должен превышать 10 А. При длительном прохождении тока ОЗЗ через опору возможно высыхание грунта вблизи заземления опоры и увеличение общего сопротивления заземления опоры. При этом опора оказывается под высоким потенциалом, что может быть причиной электротравм людей и животных, находящихся вблизи этой опоры.

Если ток ОЗЗ меньше указанных значений, то линия может работать до момента отыскания повреждения (не более 2-х часов).

При токах, больших приведенных значений, в месте замыкания на землю может возникнуть 3-4-х кратные относительно Uн перенапряжения, что опасно особенно для ВЛ 35кВ. От термического действия дуги в месте КЗ повреждается изоляция, разрушается железобетон, возгорается древесина. Вследствие этого увеличивается вероятность перехода дуги замыкания на землю в КЗ между фазами, особенно в кабельных сетях.

Режим изолированной нейтрали характерен для сетей с небольшой суммарной протяженностью кабельных линий (сетей собственных нужд блочных электростанций, нефтеперекачивающих и газокомпрессорных станций, насосных станций водоснабжения и канализации, сетей небольших населенных пунктов, не связанных электрически с сетями больших городов, а также для многих воздушных сетей в сельской местности).

Если значение суммарного емкостного тока сети превышает допустимое значение по, то требуется выполнить компенсацию емкостного тока с помощью индуктивности дугогасящих реакторов (ДГР), т.е. перейти на другой режим нейтрали.

Читайте также:  Атрибуты для физкультуры своими руками

Режим №2: Резонансно-заземленная нейтраль (компенсированной нейтрали)

В этом случае требуется включить на шины 6 (или 10) кВ трансформатор ЗТ и заземлить сеть через дугогасящий реактор ДГР (катушку индуктивности). В России требуется обеспечить резонансную настройку дугогасящего реактора, при которой происходит полная компенсация емкостного тока Iз – в месте однофазного замыкания на землю индуктивным током IL при частоте 50 Гц.

Перевод сетей 6 и 10 кВ в режим №2 производят в нашей стране с начала 60-х годов прошлого века. Для этой цепи должны, как правило, применяться плавно регулируемые ДРГ с автоматической настройкой тока компенсации при изменениях емкости сети. Однако такие ДРГ до последнего времени серийно не выпускались. ДРГ со ступенчатым регулированием не могут обеспечить полную компенсацию емкостных токов, поскольку эти режимы могут изменяться даже в течение суток. При выборе принципов выполнения защиты от ОЗЗ приходится считаться с реальной возможностью полной или почти полной компенсации емкостного тока сети при каком-то режиме сети и возникновении ОЗЗ. Поэтому токовые защиты от ОЗЗ, реагирующие на ток промышленной частоты 50 Гц, принципиально не могут использоваться для сетей, работающих в режиме №2.

Наибольшее распространение в таких сетях получили устройства защиты, реагирующие на гармонические составляющие тока ОЗЗ. Большинство из этих устройств используют высшие гармонические составляющие тока нулевой последовательности при ОЗЗ, например устройство УСЗ-3М, комплект дистанционной сигнализации замыкания на землю КДЗС, специальный модуль в цифровом терминале SPAC-800. В настоящее время серийно выпускаются автоматически регулируемые ДРГ типа РУОМ.

Режим 2 используется в кабельных сетях больших и средних городов, крупных промышленных предприятий. А также в загородных ВЛ большой протяженности.

Режим №3: С заземлением нейтрали через резистор

Этот режим в СССР начали применять на блочных электростанциях с 1986 г., чтобы обеспечить быстрое отключение однофазных замыканий на землю в электродвигателях 6 кВ до того, как ОЗЗ перейдет в многофазное КЗ, опасное для статора двигателя. В других двух описанных выше режимах при действии РЗ на сигнал затрачиваются десятки на определение двигателя (или фидера) с ОЗЗ. По статическим данным по этой причине за 10 лет было повреждено более 10% ОЗЗ перешли в многофазные (в распределительных сетях – около 70 %)

При заземлении нейтрали через резистор R на всех присоединениях осуществляется самая простая токовая защита от замыканий на землю с селективным действием на отключение только поврежденного элемента без выдержки времени (t≤0.1 с) и с резервным отключением сначала ДТ, а затем источников питания. При отключении ДТ сеть автоматически переводится в режим №1 и простая (ненаправленная) токовая защита уже не сможет обеспечить селективное отключение двигателя М при ОЗЗ в этом двигателе.

При определенных параметрах дополнительного (заземляющего) трансформатора ДТ и добавочного резистора R ток Iк (1) = 35 – 40 А. Такое значение тока обеспечивает высокую чувствительность токовой защиты при замыкании на выводах электродвигателя и защиту 85% обмотки статора. Уставки токовых защит выбираются из условия обеспечения их несрабатывания при внешних замыканиях на землю (заземление через резистор уменьшает бросок емкостного тока в момент пробоя изоляции вне зоны защиты по сравнению с таким же повреждением в сетях с изолированной или компенсированной нейтралью).

Защита от ОЗЗ на электродвигателях М и трансформаторах Т должна действовать на отключение собственного выключателя без выдержки времени, при этом рекомендуется использовать быстродействующее промежуточное реле (РП-220, РП-17 и т.п.). Резервная защита от ОЗЗ, установленная на дополнительном трансформаторе ДТ, действует с выдержкой времени около 0,5 с на отключение рабочего (резервного) ввода, т.е. на погашение всей секции 10 (6) кВ. Возможно и другое решение: отключение самого ДТ, т.е. перевод секции на режим работы с изолированной нейтралью и дальнейший поиск элемента с ОЗЗ путем поочередного отключения и включения всех элементов с одновременным контролем напряжения нулевой последовательности.

Параметры ДТ и R, для создания тока Iк (1) = 35 – 40 А, представляют лишь частный случай в решении проблемы защиты сетей этих классов напряжений как от перенапряжений, так и от замыканий на землю. Значения токов однофазного замыкания на землю могут находиться в пределах от нескольких сот ампер до нескольких ампер. В первой группе функции защиты от ОЗЗ могут исполнять защиты от междуфазных КЗ при условии их трехфазного исполнения и отключения поврежденного элемента без выдержки времени. Во второй группе вариантов, с «высокоомным» заземлением нейтрали через резистор, значения активного тока замыкания на землю подбираются в пределах от 1 до 7 А соответственно значению емкостного тока данной сети. Таким образом, суммарный ток в месте повреждения оказывается в раз больше емкостного тока сети (при отсутствии резистора). При таких небольших значениях тока поврежденный элемент можно не отключать мгновенно, что дает возможность оперативному персоналу перевести питание на другой источник, а затем произвести отключение поврежденного элемента. Надо отметить, что для современных токовых защит с аналоговыми полупроводниковыми и цифровыми реле такие значения тока промышленной частоты вполне достаточны для срабатывания при ОЗЗ.

Часть 2

Дата добавления: 2016-03-15 ; просмотров: 1989 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.
Читайте также:  Вопросы для электриков с ответами

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВ Режим нейтрали Примечание
0,23 Глухозаземленная нейтраль Требования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69 Изолированная нейтраль Для повышения надежности электроснабжения
3,3
6
10
20
35
110 Эффективно заземленная нейтраль Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Ссылка на основную публикацию
Что сделать чтобы планшет быстро заряжался
Вам необходимо быстро уходить, на сборы всего минут двадцать, вы хватаете в руки планшет — а там заряда всего на...
Черные розы фото высокое качество
Роза является символом красоты. Представлена она в виде разветвлённого кустарника, на стеблях есть шипы, листья зелёного цвета, бутоны имеют различный...
Черный жемчуг цвет авто
В каталоге приведены автомобильные цвета российских и иностранных автопроизводителей. В основном, данные цвета относятся к краскам Mobihel и Duxone, автоэмали...
Что слышно про пенсионный возраст в россии
Мы в любом случае столкнемся с увеличением пенсионного возраста. Уже многократно были обозначены причины этого неприятного мероприятия. Разберём их ещё...
Adblock detector