Цифровой измеритель емкости схема

Цифровой измеритель емкости схема

Принцип работы измерителя ёмкости

Явления, происходящие при изменении состояния схемы называются переходными процессами. Это одно из фундаментальных понятий цифровых схем. Когда ключ на рисунке 1 разомкнут, конденсатор заряжается через резистор R, и напряжение на нём изменятся как показано на рисунке 1b. Соотношение определяющее напряжение на конденсаторе имеет вид:

Величины выражены в СИ единицах, t секунды, R омы, C фарады. Время за которое напряжение на конденсаторе достигнет значения VC1 , приближенно выражается следующей формулой:

Из этой формулы следует, что время t1 пропорционально емкости конденсатора. Следовательно, ёмкость может быть вычислена из времени зарядки конденсатора.

Схема

Для измерения времени зарядки, достаточно компаратора и таймера микроконтроллера, и микросхемы цифровой логики. Вполне разумно использовать микроконтроллер AT90S2313 (современный аналог – ATtiny2313). Выход компаратора используется как триггер TC1. Пороговое напряжение устанавливается резисторным делителем. Время зарядки не зависит от напряжения питания. Время зарядки определяется формулой 2, следовательно оно не зависит от напряжения питания т.к. соотношение в формуле V C 1 /E определяется только коэффициентом делителя. Конечно, вовремяизмерениянапряжениепитаниядолжнобытьпостоянно.

Формула 2 выражает время зарядки конденсатора от 0 вольт. Однако с напряжением близким к нулю сложно работать из-за следующих причин:

  • Напряжение не падает до 0 Вольт. Для полной разрядки конденсатора необходимо время. Это приведет к увеличению времен иизмерения.
  • Необходимо время между стартомзарядки и запуском таймера. Это вызовет погрешность измерения. Для AVRэто не критично т.к. на это необходим всего один такт.
  • Утечка тока на аналоговом входе. Согласно даташиту AVR, утечка тока возрастает при напряжении на входе близком к нулю вольт.

Калибровка

Для калибровки нижнего диапазона: С помощью кнопки SW1. Затем, соедините pin #1 и pin #3 на разъёме P1, вставьте конденсатор 1nF и нажмите SW1.

Для калибровки верхнего диапазона: Замкните pin #4 и #6 разъёма P1, вставьте конденсатор на 100nFи нажмите SW1.

Надпись “E4” при включении означает, что калибровочное значение в EEPROM не найдено.

Схема эта, несмотря на свою видимую сложность, совсем проста в повторении, поскольку собрана на цифровых микросхемах и при отсутствии ошибок в монтаже и использовании заведомо исправных деталей практически не требует настройки. Тем не менее, возможности устройства достаточно велики:

  • диапазон измерения – 0,01 — 10000 мкФ;
  • 4 поддиапазона – 10, 100, 1000, 10 000 мкФ;
  • выбор поддиапазона – автоматический;
  • индикация результата – цифровая, 4 разряда с плавающей десятичной точкой;
  • погрешность измерения – единица младшего разряда;

Рассмотрим схему прибора:

щелкните для увеличения

На микросхеме DD1, точнее на двух его элементах, собран кварцевый генератор, работа которого пояснений не требует. Дальше тактовая частота поступает на делитель, собранный на микросхемах DD2 – DD4. Сигналы с него с частотами 1 000, 100, 10 и 1 кГц поступают на мультиплексор DD6.1, который использован в качестве узла автоматического выбора поддиапазона.

Основной узел измерения – одновибратор, собранный на элементах DD5.3, DD5.4, длительность импульса которого напрямую зависит от подключенного к нему конденсатора. Принцип измерения емкости – подсчет количества импульсов за время работы одновибратора. На элементах DD5.1, DD5.2 собран узел, предотвращающий дребезг контактов кнопки «Старт измерения». Ну и последняя часть схемы — четырехразрядная линейка двоично-десятичных счетчиков DD9 — DD12 с выводом на четыре семисегментных индикатора.

Рассмотрим алгоритм работы измерителя. При нажатии на кнопку SB1 двоичный счетчик DD8 обнуляется и переключает узел диапазона (мультиплексор DD6.1) на самый нижний диапазон измерения – 0.010 – 10.00 мкФ. При этом на один из входов электронного ключа DD1.3 поступают импульсы частотой 1 МГц. На второй вход этого же ключа проходит разрешающий сигнал с одновибратора, длительность которого прямо пропорциональна подключенной к нему емкости измеряемого конденсатора.

Таким образом на счетную декаду DD9…DD12 начинают поступать импульсы с частотой 1 МГЦ. Если происходит переполнение декады, то сигнал переноса с DD12 увеличивает показания счетчика DD8 на единицу и разрешает запись нуля в триггер DD7 по входу D. Этот нуль включает формирователь DD5.1, DD5.2 а он в свою очередь сбрасывает счетную декаду, снова устанавливает DD7 в «1» и перезапускает одновибратор. Процесс повторяется, но на счетную декаду через коммутатор теперь поступает частота 100 кГц (включился второй диапазон).

Читайте также:  Куда подключить дополнительный вентилятор в компьютере

Если до завершения импульса с одновибратора счетная декада снова переполнилась, то опять происходит смена диапазона. Если одновибратор отключился раньше, то счет останавливается и на индикаторе можно прочитать значение подключенной для измерения емкости. Последний штрих – блок управления десятичной точкой, которая и указывает текущий поддиапазон измерения. Его функции выполняет вторая часть мультиплексора DD6, которая засвечивает нужную точку в зависимости от включенного поддиапазона.

В качестве индикаторов в схеме используются вакуумные люминесцентные индикаторы ИВ6, поэтому блок питания измерителя должен выдавать два напряжения: 1 В для накала и +12 В для анодного питания ламп и микросхем. Если индикаторы заменить ЖКИ, то можно обойтись одним источником +9В, применение же светодиодных матриц невозможно из-за малой нагрузочной способности микросхем DD9…DD12.

В качестве калибровочного резистора R8 лучше применить многооборотный, поскольку именно от точности калибровки будет зависеть величина погрешности измерения прибора. Остальные резисторы могут быть МЛТ-0.125. По поводу микросхем — в приборе можно использовать любую из серий К1561, К564, К561, К176, но следует иметь в виду, что 176 серия очень неохотно работает с кварцевым резонатором (DD1).

Настройка прибора достаточно проста, но выполнить ее следует с особой тщательностью.

  • Временно отключить кнопку SB1 от DD8 (вывод 13).
  • В точку соединения R3 с R2 подать прямоугольные импульсы частотой примерно 50-100 Гц (подойдет любой самый простой генератор на логической микросхеме).
  • На место измеряемого конденсатора подключить образцовый, емкость которого известна и лежит в диапазоне 0.5 – 4 мкФ (к примеру, К71-5В 1 мкф±1%). Если есть возможность, то емкость лучше измерить с помощью измерительного моста, но можно понадеяться и на емкость, указанную на корпусе. Здесь нужно иметь в виду, что как точно вы откалибруете прибор, так он вам и будет в будущем измерять.
  • С помощью подстроечного резистора R8 выставить показания индикаторов как можно точнее по соответствию с емкостью эталонного конденсатора. После калибровки подстроечный резистор лучше законтрить каплей лака или краски.

По материалам «Радиолюбитель» №5, 2001г.

Данный прибор уже 8 лет используется для ремонта телевизоров и показал себя с самой лучшей стороны. В приборе использованы микросхемы КМОП, которые еще у многих пылятся в старых запасах. Это, а также применение ЖК — индикатора ИЖЦ5-4/8 позволило довести потребляемый ток до 10 мА и питать прибор от батареи типа "Крона". Размеры прибора позволяют разместить его в корпусе от мультиметра типа D-830 и т.п. Несмотря на относительно большое количество микросхем, общая стоимость деталей (по прайсам известных Интернет-магазинов) не превышает стоимости только одного современного LCD индикатора типа 8×2 или 16×1 и т.п.

На микросхемах DA1 и DA2 собран преобразователь Емкость-Время (рис.1) — разновидность известного мультивибратора на ОУ, далее будем его называть ПЕВ. На ОУ DA1.1 реализована искусственная “земля” (средняя точка) для аналоговой части. На ОУ DA2 и DA1.2 собран собственно преобразователь. Период следования импульсов определяется выражением T=2*R7*Cx*(1+ln(2*R3/R5)). Из формулы видно, что период мало зависит от дестабилизирующих факторов, таких как напряжение питания, температура (резисторы лучше выбрать термостабильные) и т.д. и может быть достаточно высоким. Амплитуда напряжения на измеряемой емкости составляет Uc=Ud*(R3/(R3+R5)), (где Ud-прямое напряжение на диоде) и не превышает 0.1 Вольт, что позволяет измерять емкость не выпаивая ее из схемы, так как при таком напряжении все полупроводниковые переходы закрыты. Применение в качестве DA2 микросхемы КР544УД2 позволило уменьшить погрешность прибора при измерении малых емкостей. Для защиты DA2 при подключении заряженного конденсатора введены элементы VD3, VD4, R4, причем, диоды выбраны со значительным допустимым однократным импульсным током, а резистор мощностью не менее 0.5 Вт. С вывода 6 DA2 импульсы с периодом, пропорциональным емкости измеряемого конденсатора, поступают на блок управления.

Читайте также:  Кухонные пластиковые панели на стену

Блок управления реализован на микросхемах DD1 – DD4. Импульсы от ПЕВ, через инвертор на DD3.1, поступают на счетный вход С D-триггера DD2.2. На вход С другого триггера микросхемы поступают секундные импульсы. Логика работы и соединение триггеров между собой таково, что на инверсном выходе DD2.2 присутствует низкий уровень длительностью равной периоду ПЕВ(время счета) и высокий – длительностью, равной примерно 1 сек (время индикации). С прямого же выхода (вывод 1) через элементы C10, R15 короткий импульс сбрасывает счетчики в 0 в начале каждого измерительного периода. Элемент 2ИЛИ-НЕ DD3.4 пропускает импульсы образцовой частоты 32768 Гц на вход счетчика только в течении времени счета. На микросхеме DD1 собран кварцевый генератор образцовой частоты, которая поступает на вывод 6 DD3.4 с выходного буфера (вывод 12). С нее же секундные импульсы поступают с вывода 5 на счетный вход триггера DD2.1, а также снимаются импульсы частотой 63 Гц (рабочая частота индикатора). ЖК индикатор не допускает подачи на него постоянного напряжения, поэтому в данном устройстве на индикатор подается переменное напряжение частотой 63 Гц, а включение сегментов осуществляется фазовым методом (если на сегмент подается сигнал такой же фазы, что и на общий вывод индикатора, то сегмент погашен, если же в противофазе – сегмент включен). Для управления запятыми применены элементы ИСКЛЮЧАЮЩЕЕ-ИЛИ микросхемы DD4. На один из входов элементов DD4.2, DD4.3, DD4.4 подается сигнал 63 Гц (в противофазе к общему индикатора). Каждый элемент, при подаче на другой вход логического 0, повторяет на выходе импульсы (запятая индицируется), а при подаче логического 1 – инвертирует (запятая погашена). DD4.2 управляет запятой 3-го (от старшего к младшему) разряда, которая нормально включена. На элементе DD4.1 реализован RS-триггер, на выходе которого устанавливается лог.1 путем подачи на вывод 5 короткого положительного импульса через элементы C8, R10, VD5 в начале каждого интервала измерения. При переполнении счетчика, отрицательный перепад с выхода старшего разряда счетчика, через инвертор DD3.2 и дифференцирующую цепочку C9, R12 , воздействует на вывод 6 DD4.1 и переводит его выход в 0. Если на месте DD4 будет использоваться микросхема более быстродействующей серии, возможно, для правильной работы DD4.1 придется уменьшить номинал R12 для укорачивания импульса на выводе 6. В случае установления на выводе 6 DD4.1 логического 0, через элемент DD4.4 включается запятая младшего разряда, индицируя переполнение.

На элементах DD4.4, VD6, R14 выполнен индикатор разряда батареи. При уменьшении напряжения ниже 7В, на выводе 12 DD4.4 устанавливается низкий уровень и “зажигаются” запятые 1-го и 2-го разрядов, тем самым сигнализируя о разряде батареи. Элемент DD3.3 играет роль буфера-инвертора.

На микросхемах DD5-DD8 выполнен счетчик импульсов с выводом на ЖК-индикатор. При подаче на вывод 6 счетчика импульсов 63 Гц той же фазы, что и на индикатор, на выходах присутствуют импульсы с фазой, зависящей от включения сегмента и на индикаторе видно соответствующую цифру.

В приборе не предусмотрено переключения пределов измерения, однако, при необходимости измерения емкостей до 10000 мкф, можно навесным монтажом ввести еще один счетчик и переключатель по схеме, изображенной на рис.6. Для этого необходимо удалить перемычку, соединяющую вывод 4 элемента DD3.4 и 4-й же вывод микросхемы DD5 и соответственно между этими точками переключателем S2 подключается счетчик DD9. Вторая группа контактов подачей логического 1 на вывод 9 DD4.2 отключает индикацию запятой 3-го разряда (на печатной плате для этого предусмотрен контакт, обозначенный “х”). Следует отметить, что при измерении емкостей свыше 1000 мкФ, считывание показаний становится не совсем удобным из-за заметности “бега” показаний в период счета. Однако, при этом, показания вполне можно прочесть безошибочно.

Ниже привожу еще один способ увеличения верхнего предела до 10000 мкФ, который, пожалуй, самый простой, какой может быть. Параллельно резистору R7 подключается дополнительный с сопротивлением 85.3 Ома, снижая его сопротивление до 76.7 Ома, то есть в 10 раз. У этого способа свои преимущества и недостатки. Преимущества: простота, минимальные затраты, не меняется максимальное время измерения (0.3 сек). Недостаток один — при таком увеличении предела, становится гораздо заметнее зависимость результата от ESR конденсатора (правда этот недостаток может стать достоинством, если прибор используется для поиска неисправных конденсаторов). Уже ESR, равный 0.5-1 Ом, приводит к серьезному снижению показаний. В данном случае, возможно придется отказаться от защитного резистора R4, что повысит опасность порчи DA2 при подключении к прибору заряженного конденсатора. Выбор способа остается за читателем.

Читайте также:  Проход через кровлю из сэндвич панелей

Практически все детали устройства размещены на односторонней печатной плате из фольгированного стеклотекстолита толщиной 1мм размерами 60х95 мм, которая представлена во вложенном файле (также в формате Sprint Layout). Индикатор установлен поверх микросхем К176ИЕ4 на колодках, которые изготовляются из розетки для микросхем с 40 выводами и шагом 2.5 мм. Розетка делится вдоль на 2 части (получаются две узкие однорядные колодки) и каждая укорачивается до 17 контактов. Выводы индикатора формуются в виде буквы “Г” с расстоянием межу загибами, равным 35 мм.

Сначала следует впаять перемычки и дискретные элементы, а потом уже микросхемы и колодки для индикатора. Перемычки изготовляются из луженого провода диаметром 0.3-0.5 мм. Все резисторы, кроме R4, применены типа МЛТ-0.125. Конденсаторы, керамические и электролитические, применены малогабаритные. Стабилитрон можно применить импортный на 3.3 В. Диоды VD1, VD2, VD5 любые из серий КД521, КД522. Диоды VD3,VD4 можно применить любые серий HER10x – HER20x. Из отечественных подойдут КД212, но могут быть сложности с установкой из-за больших габаритов и толщины выводов. Кварцевый резонатор можно применить от неисправных настольных и даже наручных часов. Микросхему DA1, в случае ее отсутствия, можно заменить почти любым сдвоенным ОУ импортного производства, но с изменением рисунка платы (или установить навесным монтажом), например, LM358. DA2 можно заменить на КР544УД1, КР140УД6 с небольшим увеличением погрешности на малых значениях. DD1 вполне можно заменить на К176ИЕ12 с изменением рисунка платы, в крайнем случае три раздельных генератора на 1, 63 и 32768 можно собрать на микросхеме К561ЛН2 по известным схемам на двух инверторах, причем стабильным должен быть только генератор на 32768 Гц, остальные можно применить на RC. К176ТМ2 меняется без изменения рисунка на К176ТМ1 или соответствующие 561 серии. Также К176ЛП2 и К176ЛЕ5 меняются на К561ЛП2 и К561ЛЕ5. Индикатор можно заменить на ИЖЦ21-4/7.

При правильном монтаже, прибор не нуждается в наладке и калибровке. Только необходимо подобрать резисторы R3, R5, R7 с точностью, как минимум, 1 % (R7 можно составить из резисторов 1 кОм и 3.3 кОм, включенных параллельно).

Как говорилось выше, прибор можно разместить в корпусе от мультиметра типа D-830 — D-838, но у маня на тот момент такового не оказалось и корпус был сделан самостоятельно: передняя панель — из 3мм-оргстекла и оклеена самоклейкой, остальной корпус — футляр из латуни толщиной 0.4 мм. Передняя панель вставляется в футляр и фиксируется с боков тонкими "саморезами", вкрученными в предварительно просверленные отверстия. Щуп сделан из двух булавок и представляет собой две пружинистые иголки, припаянные к плате из фольгированного стеклотекстолита.

В заключении, отмечу, что прибор предназначен для измерения емкости, а не ЭПС (ESR), однако, при возрастании эквивалентного последовательного сопротивления, показания прибора резко снижаются (примерно в два раза при сопротивлении 10-15 Ом). Данное свойство прибора позволяет успешно применять его для ремонта радиоаппаратуры – просто бракуем конденсаторы, емкость которых по показаниям прибора более чем в 2 раза ниже номинала, независимо от истинной причины низких показаний.

Ссылка на основную публикацию
Церковь христа спасителя в москве
Храм Христа Спасителя в Москве – кафедральный собор РПЦ, построенный около Кремля. Возведено здание на левом берегу Москва-реки. Построен храм...
Цветные герметики для ламината
Ламинат по праву считается одним из самых востребованных материалов. Причины заключаются в том, что он недорого стоит, выглядит очень выигрышно,...
Цветок phalaenopsis как ухаживать в домашних условиях
Содержание материала Описание Как ухаживать за фаленопсисом? Среди любителей комнатных растений орхидея «фаленопсис» очень популярна. Крупные цветы, напоминающие бабочек, имеют...
Циан цвет морской волны
Несколько лет назад глубокие оттенки синего были очень популярны в одежде и аксессуарах, бирюзой и лазурью пестрели все модные подиумы....
Adblock detector