Формула потенциальной энергии конденсатора

Формула потенциальной энергии конденсатора

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах. В системе СГС в сантиметрах.

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

где — заряд, — потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (еёдиэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ):

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком —конденсатору. В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S — площадь одной обкладки (подразумевается, что они равны), d — расстояние между обкладками, ε — относительная диэлектрическая проницаемость среды между обкладками, ε = 8.854·10 −12 Ф/м — электрическая постоянная.

Конденса́тор (от лат. condensare — «уплотнять», «сгущать») — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённыхдиэлектриком, толщина которого мала по сравнению с размерами обкладок.

Виды конденсаторов: 1. по виду диэлектрика: воздушные, слюдяные, керамические, электролитические 2. по форме обкладок: плоские, сферические. 3. по величине емкости: постоянные, переменные (подстроечные).

Электроемкость плоского конденсатора

где S — площадь пластины (обкладки) конденсатора d — расстояние между пластинами eо — электрическая постоянная e — диэлектрическая проницаемость диэлектрика

Читайте также:  Как избавиться от ржавчины на раковине

Включение конденсаторов в электрическую цепь

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА

Конденсатор — это система заряженных тел и обладает энергией. Энергия любого конденсатора:

где С — емкость конденсатора q — заряд конденсатора U — напряжение на обкладках конденсатора Энергия конденсатора равна работе, которую совершит электрическое поле при сближении пластин конденсатора вплотную, или равна работе по разделению положительных и отрицательных зарядов , необходимой при зарядке конденсатора.

ЭНЕРГИЯ ЭЛЕКТРИЧЕСКОГО ПОЛЯ КОНДЕНСАТОРА

Энергия конденсатора приблизительно равна квадрату напряженности эл. поля внутри конденсатора. Плотность энергии эл. поля конденсатора:

«Физика — 10 класс»

Как и любая система заряженных тел, конденсатор обладает энергией.
Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно.

Энергия заряженного конденсатора.

Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов.
Согласно закону сохранения энергии эта работа равна энергии конденсатора.
В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37).
При разрядке конденсатора лампа вспыхивает.
Энергия конденсатора превращается в тепло и энергию света.

Выведем формулу для энергии плоского конденсатора.

Напряженность поля, созданного зарядом одной из пластин, равна Е/2, где Е — напряженность поля в конденсаторе.
В однородном поле одной пластины находится заряд q, распределенный по поверхности другой пластины (рис.14.38).

Согласно формуле (14.14) для потенциальной энергии заряда в однородном поле энергия конденсатора равна:

где q — заряд конденсатора, а d — расстояние между пластинами.

Так как Ed=U, где U — разность потенциалов между обкладками конденсатора, то его энергия равна:

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин вплотную.

Если заряд на пластинах остаётся постоянным, при сближении пластин поле совершает положительную работу:

При этом энергия электрического поля уменьшается.

Читайте также:  Рукомойник с краном для дачи

Заменив в формуле (14.25) разность потенциалов или заряд с помощью выражения (14.22) для электроемкости конденсатора, получим:

Можно доказать, что эти формулы справедливы для любого конденсатора, а не только для плоского.

Энергия электрического поля.

Согласно теории близкодействия вся энергия взаимодействия заряженных тел сконцентрирована в электрическом поле этих тел.
Значит, энергия может быть выражена через основную характеристику поля — напряженность.

Так как напряженность электрического поля прямо пропорциональна разности потенциалов (U=Ed), то согласно формуле

энергия конденсатора прямопропорциональна квадрату напряженности электрического поля внутри него:

.

Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера.
На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая.
Нажатие клавиши изменяет емкость конденсатора.
Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер.

Энергия конденсатора обычно не очень велика — не более сотен джоулей.
К тому же она не сохраняется долго из-за неизбежной утечки заряда.
Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии.

Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения.
Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно.
Именно это свойство широко используют на практике.

Лампа-вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей.
Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости.

Однако основное применение конденсаторы находят в радиотехнике.

Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

Читайте также:  Упаковка для букетов сделать своими руками

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электростатика — Физика, учебник для 10 класса — Класс!ная физика

Заряженный конденсатор обладает энергией. Получим выражение для этой энергии, рассматривая плоский конденсатор. Пусть одна из пластин заряженного конденсатора перемещается к другой под действием кулоновских сил до полного соприкосновения. При соприкосновении заряд становится равным нулю, конденсатор исчезает, а это означает, что становится равной нулю и энергия конденсатора. Следовательно, работа действовавшей на пластину электрической силы равна энергии, первоначально запасенной в конденсаторе. Найдем эту работу. Сила, действующая на движущуюся пластину, равна произведению ее заряда на напряженность поля, созданного другой пластиной. Напряженность однородного электрического поля, создаваемого пластиной конденсатора, равна Е = 2pks, где s – поверхностная плотность заряда на пластине . И, следовательно, искомая работа равна .

Таким образом, выражение для энергии конденсатора имеет вид:

Поскольку заряд конденсатора и напряжение на нем связан соотношением , то для энергии заряженного конденсатора можно записать и другие выражения:

Энергию заряженного конденсатора можно выразить и через напряженность поля внутри конденсатора. Так как напряжение между обкладками конденсатора , а емкость конденсатора , то для энергии конденсатора:

где V – объем электрического поля между обкладками конденсатора. Так как энергия конденсатора пропорциональна его объему, то величина

является объемной плотностью энергии электрического поля.

Вычислим, для примера, энергию, которую можно запасти в заполненном маслом конденсаторе, имеющем емкость в 1 микрофараду и рассчитанном на напряжение в 2000 В. Она равна:

Эта энергия не кажется очень большой. Масса такого конденсатора порядка 0,5 кг. Если его поднять в воздухе всего на 0,4 м, то его потенциальная энергия в поле тяготения увеличится на 2 Дж. В подходящей электрической цепи запасенную в конденсаторе электрическую энергию можно извлечь в течение 1 микросекунды. Такой разряд конденсатора обеспечит мгновенную мощность .

Ссылка на основную публикацию
Флуоресцентная краска для авто
В состав светящейся краски входит люминофор, который в течении дня накапливает свет и благодаря этому светится в темноте. В дневное...
Фильтр гейзер смена картриджей
Благодаря тому, что в настоящее время получить порцию полезной информации стало гораздо проще, большинство современных жителей активно прочитывают рекомендации врачей,...
Фильтр грубой очистки картридж
Картриджи для фильтров очистки воды серии slim и BB можно разделить на несколько групп, в зависимости от функций, которые они...
Флэт айрон стейк что это такое
Справочник по самым популярным видам стейков, основанный на американской схеме разделки туши. Любой из этих кусков вы можете заказать в...
Adblock detector