Функциональная схема регулирования расхода

Функциональная схема регулирования расхода

1. Особенности регулирования расхода

2. Регулирование устройств для перемещения жидкостей и газов

3. Регулирование соотношения расходов двух веществ

1. Особенности регулирования расхода

При регулировании расхода нужно учитывать некоторые особенности, не присущие обычно системам регулирования других технологических параметров.

Первая особенность – это небольшая (обычно пренебрежимо малая) инерционность объекта регулирования, который представляет собой, как правило, участок трубопровода между первичным измерительным преобразователем для измерения расхода и регулирующим органом. После перемещения штока регулирующего органа в новое положение новое значение расхода устанавливается за доли секунды или, в крайнем случае, за несколько секунд. Это означает, что динамические характеристики системы определяются главным образом инерционностью измерительного устройства, регулятора, исполнительного устройства и линией передачи сигнала (импульсных линий).

Вторая особенность проявляется в том, что сигнал, соответствующий измеренному значению расхода, всегда содержит помехи, уровень которых высок. Частично шум представляет собой физические колебания расхода, частота которых настолько велика, что система не успевает на них реагировать. Наличие высокочастотных составляющих в сигнале изменения расхода – результат пульсаций давления в трубопроводе, которые в свою очередь являются следствием работы насосов, компрессоров, случайных колебаний расхода, например, при дросселировании потока через сужающее устройство. Поэтому при наличии шума, чтобы избежать усиления в системе случайных возмущений, следует применять малые значения коэффициента усиления регулятора.

Рассмотрим объект регулирования расхода – участок трубопровода 1, расположенный между местом измерения расхода (местом установки первичного измерительного преобразователя, например диафрагмы 2) и регулирующим органом 3 (рис. 1). Длина прямого участка трубопровода определяется правилами установки нормальных сужающих устройств и регулирующих органов и может составить несколько метров. Динамику объекта (трубопровода) – канала расход вещества через регулирующий клапан–расход вещества через расходомер – можно представить статическим звеном первого порядка с транспортным запаздыванием. Значение постоянной времени T составляет несколько секунд; время транспортного запаздывания τзап для газа – составляет доли секунды, для жидкости – несколько секунд.

Рис. 1. Фрагмент системы регулирования расхода

Поскольку инерционность объекта при регулировании расхода незначительна, к выбору технических средств управления и методов расчета АСУ предъявляются повышенные требования.

В системах регулирования расхода применяют различные способы изменения расхода:

1. дросселирование потока вещества через регулирующий орган (клапан, заслонка, шибер и др.), установленный на трубопроводе;

2. изменение угловой скорости вращения рабочего вала насоса или вентилятора;

3. байпасирование потока (под байпасированием понимается переброс части вещества из основной магистрали в обводную линию).

2. Регулирование устройств для перемещения жидкостей и газов

Для транспортировки жидкостей по трубопроводам часто применяют центробежные и поршневые насосы, для транспортировки газов – вентиляторы, газодувки, центробежные компрессоры и др. Цель регулирования работы насосов, вентиляторов, компрессоров – поддержать их заданную производительность. Рассмотрим для примера схему регулирования расхода, создаваемого центробежным насосом (рис. .2). Датчик расхода 2 устанавливается после центробежного насоса 1 на линии нагнетания перед регулирующим клапаном 4. При отклонении расхода жидкости от заданного значения регулятор 3 формирует командный сигнал, в соответствии с которым исполнительный механизм перемещает затвор регулирующего клапана 4. Проходное сечение регулирующего клапана изменяется, что приводит к изменению суммарного сопротивления гидравлической линии и, следовательно, расхода жидкости.

Предложенный вариант регулирования расхода жидкости не применим, если для перемещения жидкости используют поршневой насос: по команде регулятора регулирующий клапан может полностью закрыться, что, в конечном итоге, приведет к разрыву трубопровода. Если регулирующий клапан установить на линии всасывания поршневого насоса, то это приводит к помпажу.

2 – датчик расхода;

3 – регулятор расхода;

4 – регулирующий клапан

Рис. 2. Схема регулирования расхода, создаваемого центробежным насосом

Тогда для регулирования расхода используют байпасирование потока (рис. 3): часть жидкости перепускают из нагнетательной линии во всасывающую линию. Таким же способом регулируют производительность шестеренчатых и лопастных насосов.

Рис. 3. Схема регулирования расхода, создаваемого поршневым насосом

Неустойчивая работа насоса, характеризуемая частой сменой режимов работы и гидравлическими ударами, носит название помпаж.

Производительность центробежных компрессоров стабилизируют системами регулирования с регулирующим клапаном, установленным на линии всасывания, и противопомпажной автоматической защитой (рис. 4). Для защиты применяется система сброса части сжатого газа в ресивер, уменьшая при этом расход сжатого газа в линии потребителя. В случае приближения режима работы компрессора к области помпажа, регулятор расхода открывает регулирующий клапан, установленный на линии нагнетания к ресиверу. Это приводит к увеличению производительности компрессора, снижению давления в нагнетательной линии, повышению давления во всасывающей линии, что предотвращает помпаж компрессора.

2 – датчики расхода;

4 – регулирующие клапаны

Читайте также:  Сэндвич панели или газобетон

Рис. 4. Схема регулирования производительности центробежного компрессора с противопомпажной защитой

3. Регулирование соотношения расходов двух веществ

Существует несколько вариантов регулирования соотношения расходов двух веществ.

Первый вариант. Суммарный расход двух веществ не задан, при этом расход одного из веществ F 1 может меняться произвольно. Назовем этот расход «ведущим». Расход второго вещества F 2 назовем «ведомым». Соотношение между расходами второго и первого вещества должно быть постоянным и равным п. Следовательно, «ведомый» расход равен:

1, 2 – датчики расхода;

3 – регулятор соотношения расходов;

4 – регулирующий клапан

Рис. 5. Схема регулирования соотношения расходов при произвольной нагрузке

Второй вариант. Заданы: соотношение расходов двух веществ и ведущий расход F 1. Помимо регулирования соотношения расходов двух веществ применяют дополнительно еще регулирование «ведущего» расхода. При таком регулировании изменение задания по «ведущему» расходу F 1 автоматически изменяет и «ведомый» расход F 1 в заданном соотношении с F 1.

1, 2 – датчики расхода;

3 – регулятор соотношения расходов;

4 – регулятор расхода;

5, 6 – регулирующие клапаны

Рис. 6. Схема регулирования соотношения расходов при заданной нагрузке

Третий вариант. При заданном «ведущем» расходе регулирование соотношения расходов двух веществ проводится с коррекцией по третьему технологическому параметру. Регулирование соотношения расходов двух веществ является внутренним контуром в каскадной системе регулирования третьего технологического параметра, например, уровня в реакторе-смесителе 1. Заданный коэффициент соотношения расходов двух веществ устанавливается внешним регулятором уровня 6 в зависимости от третьего параметра.

2, 3 – датчики расхода;

4– регулятор соотношения расходов;

5– регулятор расхода;

6 – регулятор уровня;

7,8– регулирующие клапаны;

9 – датчик уровня

Рис. 7. Схема регулирования соотношения расходов с коррекцией
по третьему параметру (уровню) при заданной нагрузке

Особенность настройки каскадных САУ заключается в том, что на задание внутреннему регулятору (в данном случае регулятору соотношения расходов двух веществ) устанавливается ограничение:

где n н, n в – нижнее и верхнее соотношения расходов веществ соответственно.

Если выходной сигнал внешнего регулятора (регулятора уровня) выходит за пределы [ n н, n в ] , то задание внутреннему регулятору (в данном случае регулятору соотношения расходов двух веществ) не меняется, а остается на предельно допустимом значении п (а именно или n н или n в).

Требуемое (заданное) качество переходных процессов предопределяет выбор законов управления. Для регулирования расхода без установившейся (статической) погрешности в одноконтурных системах управления применяют ПИ-регуляторы. Если система управления расходом является внутренним контуром двухконтурной каскадной системы управления, то в качестве регулятора расхода может использовать П-регулятор.

В промышленных САР расхода не рекомендуется применять ПД- или ПИД-регуляторы. Если в сигнале изменения расхода присутствуют высокочастотные сигналы (помехи), то использование Д-составляюших в законе регулирования без предварительного сглаживания сигнала расхода может вызвать неустойчивую работу системы управления.

Страницы работы

Фрагмент текста работы

СОДЕРЖАНИЕ

1 Постановка задачи разработки системы управления.

2 Разработка структуры системы

2.1 По принципиальной функциональной схеме составим структурную.

2.2 Выбор передаточных функций элементов системы.

3 Расчет характеристик системы

4 Ввод в систему нелинейного элемента

1 ПОСТАНОВКА ЗАДАЧИ РАЗРАБОТКИ СИСТЕМЫ УПРАВЛЕНИЯ

Рисунок 1-Принципиалная схема системы автоматического регулирования расхода жидкости

Принцип действия. Объектом тестирования является электроцентробежный насос. Насос устанавливается на станину и через водопроводящую головку соединяется с приводом (асинхронный электродвигатель). Выход насоса соединяется шлангом высокого давления с измерительным блоком. Проверка насоса начинается с режима «Обкатка». В этом режим сервопривод трехходового крана переключает поток жидкости на смотровую колбу. Если насос забит, то жидкости в смотровой колбе не будет, а давление на выходе насоса будет расти. Если жидкость поступает в смотровую колбу, то обкатка идет до тех пор, пока она не станет чистой, то есть из рабочих органов насоса выйдет вся грязь. При необходимости можно опрессовать насос. Для этого закрывается электропневмоклапан(заслонка) на выходе насоса, который полностью перекрывает расход. Давление на выходе при этом возрастает.

2 РАЗРАБОТКА СТРУКТУРЫ СИСТЕМЫ

2.1. По принципиальной функциональной схеме выбранной системы составим структурную.

Рисунок 2-Функциональная схема системы.

Рисунок 3-Структурная схема системы.

2.2.Выбор передаточных функций элементов системы

Каждому звену в данной схеме соответствует определенная передаточная функция.

Насос:

Емкость:

Датчик расхода:

-постоянная времени датчика,=0,258 ;-постоянная времени емкости,;-постоянная времени датчика, =0,282;-передаточный коэффициент насоса,;-передаточный коэффициент емкости,;-передаточный коэффициент датчика, =2,82

Определим передаточную функцию для двигателя

Передаточная функция разомкнутой системы

Общая передаточная функция(для замкнутой системы):

3 РАСЧЕТ ХАРАКТЕРИСТИК СИСТЕМЫ

Для определения устойчивости системы, запасов устойчивости, прямых и косвенных оценок необходимо рассчитать и построить ряд различных характеристик (переходная, импульсная функции, АФХ, АЧХ, ЛАЧХ, ЛФЧХ).

Для этого можно воспользоваться пакетом прикладных программ Mathsoft Apps (MathCad, MathLab).

Читайте также:  Роза обригадо фото и описание

Проверим систему на устойчивость, по критерию устойчивости Ляпунова.

Найдем полюса (корни хар-ского уравнения) передаточной функции :

Все полюса имеют отрицательную вещественную часть, следовательно, система устойчива.

Построим переходный процесс и определим прямые оценки качества.

Автоматическое регулирование — это управление технологическими процессами при помощи продвинутых устройств с заранее определенными алгоритмами.

В быту, например, автоматическое регулирование может осуществляться при помощи термостата, который измеряет и поддерживает комнатную температуру на заданном уровне.

Автоматическое регулирование

После того, как желательная температура задана, термостат автоматически контролирует комнатную температуру и включает или отключает нагреватель или воздушный кондиционер по мере необходимости, чтобы поддержать заданную температуру.

На производстве управление процессами обычно осуществляется средствами КИП и А, которые измеряют и поддерживают на необходимом уровне технологические параметры процесса, такие как: температура, давление, уровень и расход. Ручное регулирование на более-менее масштабном производстве затруднительно по ряду причин, а многие процессы вообще невозможно регулировать вручную.

Технологические процессы и переменные процесса

Для нормального выполнения технологических процессов необходимо контролировать физические условия их протекания. Такие физические параметры, как температура, давление, уровень и расход могут изменяться по многим причинам, и их изменения влияют на технологический процесс. Эти изменяемые физические условия называются «переменными процесса».

Некоторые из них могут понизить эффективность производства и увеличить производственные затраты. Задачей системы автоматического регулирования является минимизация производственных потерь и затрат на регулирование, связанных с произвольным изменением переменных процесса.

На любом производстве осуществляется воздействие на сырьё и другие исходные компоненты для получения целевого продукта. Эффективность и экономичность работы любого производства зависит от того, как технологические процессы и переменные процесса управляются посредством специальных систем регулирования.

На тепловой электростанции, работающей на угле, уголь размалывается и затем сжигается, чтобы произвести тепло, необходимое для преобразования воды в пар. Пар может использоваться по множеству назначений: для работы паровых турбин, тепловой обработки или сушки сырых материалов. Ряд операций, которые эти материалы и вещества проходят, называется «технологическим процессом». Слово «процесс» также часто используется по отношению к индивидуальным операциям. Например, операция по размолу угля или превращения воды в пар могла бы называться процессом.

Принцип работы и элементы системы автоматического регулирования

В случае системы автоматического регулирования наблюдение и регулирование производится автоматически при помощи заранее настроенных приборов. Аппаратура способна выполнять все действия быстрее и точнее, чем в случае ручного регулирования.

Действие системы может быть разделено на две части: система определяет изменение значения переменной процесса и затем производит корректирующее воздействие, вынуждающее переменную процесса вернуться к заданному значению.

Система автоматического регулирования содержит четыре основных элемента: первичный элемент, измерительный элемент, регулирующий элемент и конечный элемент.

Элементы системы автоматического регулирования

Первичный элемент воспринимает величину переменной процесса и превращает его в физическую величину, которое передается в измерительный элемент. Измерительный элемент преобразовывает физическое изменение, произведенное первичным элементом, в сигнал, представляющий величину переменной процесса.

Выходной сигнал от измерительного элемента посылается к регулирующему элементу. Регулирующий элемент сравнивает сигнал от измерительного элемента с опорным сигналом, который представляет собой заданное значение и вычисляет разницу между этими двумя сигналами. Затем регулирующий элемент производит корректирующий сигнал, который представляет собой разницу между действительной величиной переменной процесса и ее заданным значением.

Выходной сигнал от регулирующего элемента посылается к конечному элементу регулирования. Конечный элемент регулирования преобразовывает получаемый им сигнал в корректирующее воздействие, которое вынуждает переменную процесса возвратиться к заданному значению.

В дополнение к четырем основным элементам, системы регулирования процессами могут иметь вспомогательное оборудование, которое обеспечивает информацией о величине переменной процесса. Это оборудование может включать такие приборы как самописцы, измерители и устройства сигнализации.

Схема простой системы автоматического регулирования

Виды систем автоматического регулирования

Имеются два основных вида автоматических систем регулирования: замкнутые и разомкнутые, которые различаются по своим характеристикам и следовательно — по уместности применения.

Замкнутая система автоматического регулирования

В замкнутой системе информация о значении регулируемой переменной процесса проходит через всю цепочку приборов и устройств, предназначенных для контроля и регулирования этой переменной. Таким образом, в замкнутой системе производится постоянное измерение регулируемой величины, её сравнение с задающей величиной и оказывается соответствующее воздействие на процесс для приведения регулируемой величины в соответствие с задающей величиной.

Схема замкнутой системы автоматического регулирования

Например, подобная система хорошо подходит для контроля и поддержания необходимого уровня жидкости в резервуаре. Буек воспринимает изменение уровня жидкости. Измерительный преобразователь преобразует изменения уровня в сигнал, который отправляет на регулятор. Который, в свою очередь, сравнивает полученный сигнал с необходимым уровнем, заданным заранее. После регулятор вырабатывает корректирующий сигнал и отправляет его на регулирующий клапан, который корректирует поток воды.

Читайте также:  Краска для ткани желтая

Разомкнутая система автоматического регулирования

В разомкнутой системе нет замкнутой цепочки измерительных и обрабатывающих сигнал приборов и устройств от выхода до входа процесса, и воздействие регулятора на процесс не зависит от результирующего значения регулируемой переменной. Здесь не производится сравнение между текущим и желаемым значением переменной процесса и не вырабатывается корректирующее воздействие.

Схема разомкнутой системы автоматического регулирования

Один из примеров разомкнутой системы регулирования — автоматическая мойка автомобилей. Это технологический процесс по мойке автомобилей и все необходимые операции чётко определены. Когда автомобиль выходит с мойки предполагается, что он должен быть чистым. Если автомобиль недостаточно чист, то система этого не обнаруживает. Здесь нет никакого элемента, который бы давал информацию об этом и корректировал процесс.

На производстве некоторые разомкнутые системы используют таймеры, чтобы гарантировать, что ряд последовательных операций выполнен. Этот вид разомкнутого регулирования может быть приемлем, если процесс не очень ответственный. Однако, если процесс требует, чтобы выполнение некоторых условий было проверено и при необходимости были бы сделаны корректировки, разомкнутая система не приемлема. В таких ситуациях необходимо применить замкнутую систему.

Методы автоматического регулирования

Системы автоматического регулирования могут создаваться на основе двух основных методов регулирования: регулирования с обратной связью, которое работает путем исправления отклонений переменной процесса после того, как они произошли; и с воздействием по возмущению, которое предотвращает возникновение отклонений переменной процесса.

Регулирование с обратной связью

Регулирование с обратной связью — это такой способ автоматического регулирования, когда измеренное значение переменной процесса сравнивается с ее уставкой срабатывания и предпринимаются действия для исправления любого отклонения переменной от заданного значения.

Система ручного регулирования с обратной связью

Основным недостатком системы регулирования с обратной связью является то, что она не начинает регулировки процесса до тех пор, пока не произойдет отклонение регулируемой переменной процесса от значения ее уставки.

Температура должна измениться, прежде чем регулирующая система начнет открывать или закрывать управляющий клапан на линии пара. В большинстве систем регулирования такой тип регулирующего действия приемлем и заложен в конструкцию системы.

В некоторых промышленных процессах, таких как изготовление лекарственных препаратов, нельзя допустить отклонение переменной процесса от значения уставки. Любое отклонение может привести к потере продукта. В этом случае необходима система регулирования, которая бы предвосхищала изменения процесса. Такой упреждающий тип регулирования обеспечивается системой регулирования с воздействием по возмущению.

Регулирование с воздействием по возмущению

Регулирование по возмущению — это регулирование с опережением, потому что прогнозируется ожидаемое изменение в регулируемой переменной и принимаются меры прежде, чем это изменение происходит.

Это фундаментальное различие между регулированием с воздействием по возмущению и регулированием с обратной связью. Контур регулирования с воздействием по возмущению пытается нейтрализовать возмущение прежде, чем оно изменит регулируемую переменную, в то время, как контур регулирования с обратной связью пытается отрабатывать возмущение после того, как оно воздействует на регулируемую переменную.

Система регулирования с воздействием по возмущению

Система регулирования с воздействием по возмущению имеет очевидное преимущество перед системой регулирования с обратной связью. При регулировании по возмущению в идеальном случае величина регулируемой переменной не изменяется, она остается на значении ее уставки. Но ручное регулирование по возмущению требует более сложного понимания того влияния, которое возмущение окажет на регулируемую переменную, а также использования более сложных и точных приборов.

На заводе редко можно встретить чистую систему регулирования по возмущению. Когда используется система регулирования по возмущению, она обычно сочетается с системой регулирования с обратной связью. И даже в этом случае регулирование по возмущению предназначается только для более ответственных операций, которые требуют очень точного регулирования.

Одноконтурные и многоконтурные системы регулирования

Одноконтурная система регулирования или простой контур регулирования — это система регулирования с одним контуром, который обычно содержит только один первичный чувствительный элемент и обеспечивает обработку только одного входного сигнала на регулятор.

Одноконтурная система регулирования

Некоторые системы регулирования имеют два или больше первичных элемента и обрабатывают больше, чем один входной сигнал на регулятор. Эти системы автоматического регулирования называются «многоконтурными» системами регулирования.

Многоконтурная система регулирования

Ссылка на основную публикацию
Фото телефона хуавей п 20 лайт
Содержание Введение Дневная съемка Селфи В помещении Ночь Портреты Впечатления Введение На прошлой неделе выходил материал о масштабном тестировании качества...
Флуоресцентная краска для авто
В состав светящейся краски входит люминофор, который в течении дня накапливает свет и благодаря этому светится в темноте. В дневное...
Флэт айрон стейк что это такое
Справочник по самым популярным видам стейков, основанный на американской схеме разделки туши. Любой из этих кусков вы можете заказать в...
Фото терморегулятора теплого пола
Одной из разновидностей обогрева помещений является система “Тёплый пол”, которая позволяет владельцу сберечь необходимый микроклимат в комнатах. При это он...
Adblock detector